【總結(jié)】....與絕對值函數(shù)有關(guān)的的參數(shù)最值及范圍問題類型二一次項(xiàng)系數(shù)含參數(shù)1已知函數(shù)f(x)=x|x﹣a|+2x,若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)t的取值范圍是() A. (1,) B. (1,)
2025-06-16 04:01
【總結(jié)】.三、知識(shí)新授(一)函數(shù)極值的概念(二)函數(shù)極值的求法:(1)考慮函數(shù)的定義域并求f'(x);(2)解方程f'(x)=0,得方程的根x0(可能不止一個(gè))(3)如果在x0附近的左側(cè)f'(x)0,右側(cè)f'(x)&
2024-08-04 05:40
【總結(jié)】編號:本科學(xué)生畢業(yè)設(shè)計(jì)(論文)題目:函數(shù)最值和極值的解法及其在生活當(dāng)中的應(yīng)用系部名稱:數(shù)學(xué)系專業(yè)名稱:
2025-02-04 13:45
【總結(jié)】Email:lihongqing999@:570206??谑泻P愦蟮?9號海南華僑中學(xué)李紅慶工作室函數(shù)的單調(diào)性與最值漫談海南華僑中學(xué)黃玲玲函數(shù)的單調(diào)性與最值是中學(xué)數(shù)學(xué)的核心內(nèi)容.從中學(xué)數(shù)學(xué)知識(shí)的網(wǎng)絡(luò)來看,函數(shù)的單調(diào)性與最值在中學(xué)數(shù)學(xué)中起著“紐帶”的作用,她承前于函數(shù)的值域、方程有解的條件、不等式證明,啟后于數(shù)列的最值問題、導(dǎo)數(shù)的應(yīng)用等知識(shí).例如:求函數(shù)的值域,令,則,,則函
2025-05-16 01:34
【總結(jié)】函數(shù)單調(diào)的概念?我們在函數(shù)的基本性質(zhì)中曾經(jīng)討論過函數(shù)的單調(diào)性問題,在此我們再次回顧一下函數(shù)單調(diào)的定義。?定義設(shè)函數(shù)f(x)在區(qū)間(a,b)上有定義,如果對于區(qū)間(a,b)內(nèi)的任意兩點(diǎn)x1,x2,滿足?(1)當(dāng)x1x2時(shí),恒有f(x1)?f(x2)(或f(x1)f(x2))
2024-08-24 20:29
【總結(jié)】與絕對值函數(shù)有關(guān)的的參數(shù)最值及范圍問題類型二一次項(xiàng)系數(shù)含參數(shù)1已知函數(shù)f(x)=x|x﹣a|+2x,若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)t的取值范圍是() A. (1,) B. (1,) C. (,) D. (1,)2.已知函數(shù)f(x)=x|x﹣a|+bx(
2025-06-16 04:14
【總結(jié)】......函數(shù)最值的幾種求法新課程標(biāo)準(zhǔn)中,高中數(shù)學(xué)知識(shí)更加豐富,層次性更強(qiáng),,必須從整體上把握課程標(biāo)準(zhǔn),運(yùn)用主線知識(shí)將高中數(shù)學(xué)知識(shí)穿成串,連成片,織成網(wǎng),才有利于學(xué)生更好的掌握,而函數(shù)的最值問題在整個(gè)高中教材中顯得非常重要,為了能系統(tǒng)
2025-05-16 01:56
【總結(jié)】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導(dǎo)數(shù)法(7)數(shù)形結(jié)合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問題是數(shù)學(xué)的重要內(nèi)容之一,是解決數(shù)學(xué)應(yīng)用的基礎(chǔ)。二、典型例題例1:對每個(gè)實(shí)數(shù)x,設(shè)f(x)是y=2
2024-11-07 00:41
【總結(jié)】......專題三:含絕對值函數(shù)的最值問題1.已知函數(shù)(),若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.不等式化為即:(*)對任意的恒成立因?yàn)?,所以分如下情況討論:[來源:學(xué)科網(wǎng)ZXXK]①當(dāng)時(shí),不等式(*)②當(dāng)
2025-03-24 23:42
【總結(jié)】│函數(shù)的單調(diào)性與最值│知識(shí)梳理知識(shí)梳理│知識(shí)梳理│知識(shí)梳理│知識(shí)梳理│要點(diǎn)探究要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究
2024-07-29 05:00
【總結(jié)】函數(shù)的值域與最大(小)值(一)復(fù)習(xí)指導(dǎo)函數(shù)的值域就是全體的函數(shù)值所構(gòu)成的集合,是由其對應(yīng)法則和定義域共同決定的,在多數(shù)情況下,一旦函數(shù)的定義域和對應(yīng)法則確定,函數(shù)的值域也就隨之確定了,而函數(shù)的最大(小)值一定是值域內(nèi)最大(小)的一個(gè)函數(shù)值,因此求函數(shù)的值域和求函數(shù)的最大(小)值在方法上是相通的.求函數(shù)的值域要注意優(yōu)先考慮定義域,常用的方法有:(1)觀察法:利用已有的基本函
2025-04-04 05:07
【總結(jié)】實(shí)驗(yàn)六 多元函數(shù)的極值【實(shí)驗(yàn)?zāi)康摹?.多元函數(shù)偏導(dǎo)數(shù)的求法。2.多元函數(shù)自由極值的求法3.多元函數(shù)條件極值的求法.4.學(xué)習(xí)掌握MATLAB軟件有關(guān)的命令。【實(shí)驗(yàn)內(nèi)容】求函數(shù)的極值點(diǎn)和極值【實(shí)驗(yàn)準(zhǔn)備】1.計(jì)算多元函數(shù)的自由極值對于多元函數(shù)的自由極值問題,根據(jù)多元函數(shù)極值的必要和充分條件,可分為以下幾個(gè)步驟:,得到駐點(diǎn),求出二階偏導(dǎo)數(shù)步
2024-08-04 02:20
【總結(jié)】第二章第三節(jié)函數(shù)的單調(diào)性與最值一、選擇題1.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( )A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|2.下列函數(shù)f(x)中,滿足“對任意x1,x2∈(0,+∞),當(dāng)x1f(x2)”的是( )A.f(x)=
2025-03-24 12:17
【總結(jié)】函數(shù)的單調(diào)性與最值一、知識(shí)梳理1.增函數(shù)、減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,區(qū)間D?I,如果對于任意x1,x2∈D,且x1f(x2).2.單調(diào)區(qū)間的定義若函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),則稱函數(shù)y=
【總結(jié)】第三節(jié)函數(shù)的值域與最值基礎(chǔ)梳理1.函數(shù)的最值一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,(1)如果存在x0∈A,使得對于任意x∈A,都有________,那么稱f(x0)為y=f(x)的最大值,記為________.(2)如果存在x0∈A,使得對于任意x∈A,都有________,那么稱f(x0)為y=f(x)
2024-11-12 16:45