【總結(jié)】簡單復(fù)合函數(shù)的導(dǎo)數(shù)課時目標(biāo)能求形如f(ax+b)形式的復(fù)合函數(shù)的導(dǎo)數(shù).[來源:Z|xx|k.Com]復(fù)合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).
2024-12-05 09:29
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在研究函數(shù)在的應(yīng)用(函數(shù)的極值)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用;2.了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號)。二:課前預(yù)習(xí)1.函數(shù)a
2024-11-20 00:30
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第2課時利用導(dǎo)數(shù)研究函數(shù)的極值課時作業(yè)新人教B版選修2-2一、選擇題1.已知函數(shù)f(x)在點(diǎn)x0處連續(xù),下列命題中正確的是()A.導(dǎo)數(shù)為零的點(diǎn)一定是極值點(diǎn)B.如果在點(diǎn)x0附近的左側(cè)f′(x)0,右側(cè)f′(x)0,那么f(x0)是極小
2024-12-03 11:28
【總結(jié)】§本課時欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實(shí)際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡單的實(shí)際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實(shí)際問題的過程中體會建模思想.2.感受導(dǎo)數(shù)知識在解決實(shí)際問題中的作
2024-11-18 08:07
【總結(jié)】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運(yùn)算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【總結(jié)】1.3.3最大值與最小值【學(xué)習(xí)要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導(dǎo)數(shù)求某定義域上函數(shù)的最值.【學(xué)法指導(dǎo)】弄清極值與最值的區(qū)別是學(xué)好本節(jié)的關(guān)鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2024-11-17 23:19
【總結(jié)】圖1導(dǎo)數(shù)在實(shí)際生活的實(shí)際應(yīng)用同步練習(xí)1.一個膨脹中的球形氣球,其體積的膨脹章恒為/s,則當(dāng)其半徑增至m時,半徑的增長率是________.2.將長為a的鐵絲剪成兩段,各圍成長與寬之比為2∶1及3∶2的矩形,那么這兩個矩形面積和的最小值為.3.如圖1,將邊
【總結(jié)】1.2.3簡單復(fù)合函數(shù)的導(dǎo)數(shù)【學(xué)習(xí)要求】1.了解復(fù)合函數(shù)的概念,掌握復(fù)合函數(shù)的求導(dǎo)法則.2.能夠利用復(fù)合函數(shù)的求導(dǎo)法則,并結(jié)合已經(jīng)學(xué)過的公式、法則進(jìn)行一些復(fù)合函數(shù)的求導(dǎo)(僅限于形如f(ax+b)的導(dǎo)數(shù)).【學(xué)法指導(dǎo)】復(fù)合函數(shù)的求導(dǎo)將復(fù)雜的問題簡單化,體現(xiàn)了轉(zhuǎn)化思想;學(xué)習(xí)中要通過中間變量的引入理解
【總結(jié)】1.5.3微積分基本定理【學(xué)習(xí)要求】1.直觀了解并掌握微積分基本定理的含義.2.會利用微積分基本定理求函數(shù)的積分.【學(xué)法指導(dǎo)】通過探究變速直線運(yùn)動物體的速度與位移的關(guān)系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,而且還提供了計(jì)算定積分的一種有效方法.本
【總結(jié)】本課時欄目開關(guān)填一填研一研練一練1.3.1單調(diào)性【學(xué)習(xí)要求】1.結(jié)合實(shí)例,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡單的不等式.3.會求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過三次).【學(xué)法指導(dǎo)】結(jié)合
2024-11-18 08:08
【總結(jié)】本課時欄目開關(guān)填一填研一研練一練1.1.1平均變化率【學(xué)習(xí)要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的實(shí)際問題.【學(xué)法指導(dǎo)】平均變化率可以刻畫函數(shù)值在某個范圍內(nèi)變化的快慢程度,理解
【總結(jié)】課題:瞬時變化率??導(dǎo)數(shù)教學(xué)目標(biāo):(1)什么是曲線上一點(diǎn)處的切線,如何作曲線上一點(diǎn)處的切線?如何求曲線上一點(diǎn)處的曲線?注意曲線未必只與曲線有一個交點(diǎn)。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時速度與瞬時加速度的定義及求解方法。(4)導(dǎo)數(shù)的概念,其產(chǎn)生的背景,如何求函數(shù)在某點(diǎn)處的
2024-11-19 21:26
【總結(jié)】數(shù)學(xué)選修2-2導(dǎo)數(shù)及其應(yīng)用知識點(diǎn)必記1.函數(shù)的平均變化率為注1:其中是自變量的改變量,可正,可負(fù),可零。注2:函數(shù)的平均變化率可以看作是物體運(yùn)動的平均速度。2、導(dǎo)函數(shù)的概念:函數(shù)在處的瞬時變化率是,則稱函數(shù)在點(diǎn)處可導(dǎo),并把這個極限叫做在處的導(dǎo)數(shù),記作或,即=.;函數(shù)的導(dǎo)數(shù)的幾何意義是切線的斜率。4導(dǎo)數(shù)的背景(1)切線的斜率;(2)瞬時速度;(3)邊際成本。5、常見的函
2025-06-07 05:44
【總結(jié)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.?如果對于區(qū)間I內(nèi)的任意兩個值x1、x2,當(dāng)x1<x2時,都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對于區(qū)間I內(nèi)的任意兩個值x1、x2
2024-11-18 08:56
【總結(jié)】§導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用目的要求:(1)鞏固函數(shù)的極值與最值(2)利用導(dǎo)數(shù)解決應(yīng)用題中有關(guān)最值問題例1.在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?