【總結(jié)】專題:數(shù)列與解析幾何綜合——點列問1.如圖,,過點P1作x軸的垂線交直線l2于點Q1,過點Q1作y軸的垂線交直線l1于點P2,過點P2作x軸的垂線交直線l2于點Q2,…,這樣一直作下去,可得到一系列點P1、Q1、P2、Q2,…,點Pn(n=1,2,…)的橫坐標(biāo)構(gòu)成數(shù)列(Ⅰ)證明;(Ⅱ)求數(shù)列的通項公式;(Ⅲ)比較的大小.【解析】(Ⅰ)證明:設(shè)點Pn的
2024-08-01 16:03
【總結(jié)】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點之間線段線段最短。②直線外一點向直線上任一點連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-24 12:12
【總結(jié)】淺談解析幾何中的“點差法”高二(七班)第一學(xué)習(xí)小組易正貴整理2022年5月解析幾何在高考中占有重要地位,一般放在試題倒數(shù)第二題,有時也成為壓軸題。在高考中,絕大多數(shù)學(xué)生只能完成第1問,第2問,因計算量大而難無法完成。在平時學(xué)習(xí)及復(fù)習(xí)過程中,要讓自己真正理解解析幾何中的最優(yōu)解法與算法,這樣在考試中才能作出正確的、最優(yōu)的解法選擇,這樣
2025-01-08 21:36
【總結(jié)】解析幾何中求參數(shù)范圍的五種策略徐利琴解析幾何中求參數(shù)范圍或與參數(shù)有關(guān)的問題,往往是高考的熱點之一。本文總結(jié)出五種求解這類問題的思考途徑與策略。一、利用題設(shè)條件中的不等關(guān)系若題設(shè)條件中有不等關(guān)系,可直接利用該條件求參數(shù)的范圍。例1.(2004全國卷IV)雙曲線的焦距為2c,直線l過點(a,0)和(0,b),且點(1,0)到直線l的距離與點(-1,0)到直線l的距離之和,求雙曲
2024-10-04 16:57
【總結(jié)】《直線和圓》常用結(jié)論1、傾斜角的定義及范圍:當(dāng)直線非水平線時,:[0,л)2、直線的斜率定義和斜率公式:斜率定義:(是直線的非直角傾斜角)斜率公式:過點的直線的斜率為:.斜率的幾何意義:非豎直直線上的任一個點向右運動一個單位,縱方向的改變量.3、把垂直于直線的向量叫做直線的法向量,.已知點,則(1)與向量平行的直線的方程可設(shè)為:;(2)與向量垂直的直線的方程可
2024-08-18 16:45
【總結(jié)】第1頁共2頁【中考數(shù)學(xué)壓軸題】定值問題定值問題一、解答題(共2道,每道50分)y=ax2+bx+c(a<0),頂點C的坐標(biāo)為(1,-4),且與x軸交于A、B兩點,A(-1,0).(1)求這條拋物線的解析式;(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線的對稱軸交于E,
2024-08-21 20:29
【總結(jié)】解析幾何中的基本公式1、兩點間距離:若,則2、平行線間距離:若則:注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。3、點到直線的距離:則P到l的距離為:4、直線與圓錐曲線相交的弦長公式:消y:,務(wù)必注意若l與曲線交于A
2025-06-18 01:03
【總結(jié)】x橫軸y縱軸z豎軸?定點o空間直角坐標(biāo)系三個坐標(biāo)軸的正方向符合右手系.即以右手握住z軸,當(dāng)右手的四個手指從正向x軸以2?角度轉(zhuǎn)向正向y軸時,大拇指的指向就是z軸的正向.一、空間點的直角坐標(biāo)Ⅶxyozxoy面yoz面zox面
2024-08-14 16:47
【總結(jié)】空間解析幾何第六章§6-2向量及其坐標(biāo)表示法?向量概念及其加減法?向量的坐標(biāo)上一張下一張向量(矢量):既有大小又有方向的量.有向線段.1M2M??a?21MM模長為1的向量。零向量:模長為0的向量0?||a?21MM||向量的模:向量
2024-07-29 07:10
【總結(jié)】8平面解析幾何內(nèi)容概述解析幾何是17世紀數(shù)學(xué)發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想。與課程改革前相比,中學(xué)解析幾何變化不大,主體內(nèi)容仍然是:直線與方程、圓與方程、圓錐曲線與方程。只是前兩者作為必修模塊,統(tǒng)稱為平面解析幾何初步,第三者則放到選修1-1和選修2-1中。另外,還在平面解析幾何初
2024-08-24 23:35
【總結(jié)】第4章 向量代數(shù)與空間解析幾何習(xí)題解答一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以3.設(shè)力作用在點,求力對點的力矩的大?。猓阂驗?所以力矩所以,力矩的大小為
2024-08-14 10:17
【總結(jié)】2019屆高二文科數(shù)學(xué)新課改試驗學(xué)案(10)---圓錐曲線中的定值定點問題的離心率為,點在C上.(I)求C的方程;(II)直線l不經(jīng)過原點O,且不平行于坐標(biāo)軸,l與C有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.:過點A(2,0),B(0,1)兩點.(I)求橢圓C的方程
2025-03-25 00:03
【總結(jié)】第七部分、拋物線的切線問題1.(08廣東)設(shè),橢圓方程為=1,拋物線方程為.如圖6所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點,(1)求滿足條件的橢圓方程和拋物線方程;(2)設(shè)分別是橢圓的左右端點,試探究在拋物線上是否存在點,使為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).
2025-06-07 22:55
【總結(jié)】1幾何中的最值問題(作業(yè))1.如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對角線AC平分∠BAD,點E在AB上,且AE=2(AE<AD),點P是AC上的動點,則PE+PB的最小值是__________.PEDCBACDQPBA
2024-08-10 20:49
【總結(jié)】.WORD格式整理..一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以4.已知向量與共線,且滿足,求向量
2024-08-14 15:42