【總結(jié)】第一篇:教學(xué)設(shè)計(jì)的概念 教學(xué)設(shè)計(jì)的概念 一、教學(xué)設(shè)計(jì)的概念教學(xué)設(shè)計(jì)(,縮寫為,也稱教學(xué)系統(tǒng)設(shè)計(jì),是面向 教學(xué)系統(tǒng),解決教學(xué)問題的一種特殊的設(shè)計(jì)活動(dòng)。它既具有設(shè)計(jì)的一般性質(zhì),又必須遵循教學(xué)的基本規(guī)...
2024-11-04 23:04
【總結(jié)】第二章導(dǎo)數(shù)與微分只有微分學(xué)才能使自然科學(xué)有可能用數(shù)學(xué)來不僅僅表明狀態(tài),并且也表明過程:運(yùn)動(dòng).恩格斯微分學(xué)???導(dǎo)數(shù)描述函數(shù)變化快慢微分描述函數(shù)變化程度是描述物質(zhì)運(yùn)動(dòng)的工具(從微觀上研究函數(shù))微分概念的產(chǎn)生是為了描述曲線的切線和運(yùn)動(dòng)質(zhì)點(diǎn)速度,微積分分為
2024-12-08 00:41
【總結(jié)】高三第一輪復(fù)習(xí)數(shù)學(xué)---導(dǎo)數(shù)的概念與運(yùn)算一、教學(xué)目標(biāo):了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念。熟記基本導(dǎo)數(shù)公式,掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會求某些簡單函數(shù)的導(dǎo)數(shù)。二、教學(xué)重點(diǎn):理解導(dǎo)函數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念。掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則
2025-06-29 15:08
【總結(jié)】變化率問題與導(dǎo)數(shù)的概念問題.吹氣球時(shí),會發(fā)現(xiàn):隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加得越來越慢,能從數(shù)學(xué)的角度解釋這一現(xiàn)象嗎?解:可知:V(r)=πr3即:r(V)=343?V當(dāng)空氣容量V從0增加1L時(shí),半徑增加了r(1)-r(0)=氣球平
2024-08-10 18:04
【總結(jié)】導(dǎo)數(shù)的概念在許多實(shí)際問題中,需要研究變量的變化速度。如物體的運(yùn)動(dòng)速度,電流強(qiáng)度,線密度,比熱,化學(xué)反應(yīng)速度及生物繁殖率等,所有這些在數(shù)學(xué)上都可歸結(jié)為函數(shù)的變化率問題,即導(dǎo)數(shù)。本章將通過對實(shí)際問題的分析,引出微分學(xué)中兩個(gè)最重要的基本概念——導(dǎo)數(shù)與微分,然后再建立求導(dǎo)數(shù)與微分的運(yùn)算公式和法則,從而解決有關(guān)變化率的計(jì)算問題。
2024-08-25 00:22
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-2第二章《變化率與導(dǎo)數(shù)》法門高中姚連省制作2一、教學(xué)目標(biāo):理解導(dǎo)數(shù)的概念,會利用導(dǎo)數(shù)的幾何意義求曲線上某點(diǎn)處的切線方程。二、教學(xué)重點(diǎn):曲線上一點(diǎn)處的切線斜率的求法教學(xué)難點(diǎn):理解導(dǎo)數(shù)的幾何意義三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程3,它是從眾多實(shí)際問
2024-11-12 16:44
2024-08-14 19:13
【總結(jié)】第一篇:《分式的概念》教學(xué)設(shè)計(jì) 《分式的概念》教學(xué)設(shè)計(jì) 教學(xué)目標(biāo) 一、知識與技能 1.理解分式的含義,能區(qū)分整式與分式。 2.理解分式中分母不能為零,會求分式中字母滿足什么條件分式有意義。 ...
2024-11-04 13:59
【總結(jié)】第一篇:算法的概念的教學(xué)設(shè)計(jì) 算法的概念的教學(xué)設(shè)計(jì) 一.內(nèi)容和內(nèi)容解析 算法是規(guī)則系統(tǒng)一種循序漸進(jìn)解決問題的過程,尤指一種為在有限步驟內(nèi)解決問題而建立的可重復(fù)應(yīng)用的計(jì)算過程. 在數(shù)學(xué)中,,算法...
2024-11-05 02:07
【總結(jié)】精品資源高三數(shù)學(xué)第一輪復(fù)習(xí)講義(74)導(dǎo)數(shù)的概念及運(yùn)算一.復(fù)習(xí)目標(biāo):理解導(dǎo)數(shù)的概念和導(dǎo)數(shù)的幾何意義,會求簡單的函數(shù)的導(dǎo)數(shù)和曲線在一點(diǎn)處的切線方程.二.知識要點(diǎn):1.導(dǎo)數(shù)的概念:
2025-04-17 00:39
【總結(jié)】四、反函數(shù)1()xfy??y=f(x)與互為反函數(shù),在同一平面直1()xfy??角坐標(biāo)系中表示同一條曲線.習(xí)慣上常將y=f(x)的反函數(shù)寫作,此1()yfx??時(shí)兩者在同一平面直角坐標(biāo)系中的圖形關(guān)于y=x對稱.若對函數(shù)
2024-08-02 06:10
【總結(jié)】1說課(基礎(chǔ)部)2教材分析目標(biāo)分析教學(xué)過程與教學(xué)方法分析學(xué)情分析教學(xué)反饋與反思說課過程:3一、教材分析1.教學(xué)內(nèi)容(三課時(shí))
2024-10-18 14:03
【總結(jié)】第一節(jié)導(dǎo)數(shù)的概念及運(yùn)算第三單元導(dǎo)數(shù)及其應(yīng)用基礎(chǔ)梳理1.函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率(1)函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率為________.(2)平均變化率是曲線陡峭程度的“________”,或者說,曲線陡峭程度是平均變化率的“________”.2.函數(shù)f(x)在x=x
2024-11-12 17:12
【總結(jié)】淺談作文訓(xùn)練書面表達(dá)一直是學(xué)習(xí)語文的重要組成部分。它要求學(xué)生有扎實(shí)的語言基本功,具備一定的審題能力、想象能力、表達(dá)能力等。老師只有在平時(shí)教學(xué)中有意識地系統(tǒng)訓(xùn)練學(xué)生的寫作能力,學(xué)生才能在激烈的競爭中信心十足,游刃有余。一、循序漸進(jìn)“冰凍三尺,非一日之寒”。寫作能力并非是一蹴而就的。它必須由淺入深、由簡到繁、由易到難、循序漸進(jìn)、一環(huán)緊扣一
2024-11-23 12:37
【總結(jié)】《函數(shù)的單調(diào)性與導(dǎo)數(shù)》教學(xué)設(shè)計(jì)教材分析1、內(nèi)容分析??導(dǎo)數(shù)是微積分的核心概念之一,是高中數(shù)學(xué)教材新增知識,在研究函數(shù)性質(zhì)時(shí)有獨(dú)到之處,,是在學(xué)習(xí)了導(dǎo)數(shù)的概念、,又為研究函數(shù)的極值和最值打下了基礎(chǔ).由于學(xué)生在高一已經(jīng)掌握了函數(shù)單調(diào)性的定義,,用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性比用定義要簡捷的多(尤其對于三次和三次以上的多項(xiàng)式函數(shù),或圖像難以畫出的函數(shù)而言),充
2025-04-16 23:38