【總結】數列的最值問題及單調數列問題求等差數列前n項和最值的兩種方法(1)函數法:利用等差數列前n項和的函數表達式,通過配方或借助圖象求二次函數最值的方法求解.(2)鄰項變號法①時,滿足的項數m使得取得最大值為;②當時,滿足的項數m使得取得最小值為.例1、在等差數列{an}中,已知a1=20,前n項和為Sn,且S10=S15,求當n取何值時,Sn取得最大值,并求出它
2025-03-25 02:51
【總結】......函數的單調性與最值復習:按照列表、描點、連線等步驟畫出函數的圖像.圖像在軸的右側部分是上升的,當在區(qū)間[0,+)上取值時,隨著的增大,相應的值也隨著增大,如果取∈[0,+),得到,,那么當<
2025-05-16 01:56
【總結】導數在函數的單調性、極值中的應用一、知識梳理1.函數的單調性與導數在區(qū)間(a,b)內,函數的單調性與其導數的正負有如下關系:如果f_′(x)0,那么函數 y=f(x)在這個區(qū)間內單調遞增;如果f_′(x)0,那么函數 y=f(x)在這個區(qū)間內單調遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內為常數.問題探究1:若函數 f(x)在(a,b)內
2025-08-04 07:33
【總結】函數的單調性與導數???教學內容:人教版《普通高中課程標準實驗教科書數學》選修1-1P97—101?教學目標:(1)知識目標:能探索并應用函數的單調性與導數的關系求單調區(qū)間,能由導數信息繪制函數大致圖象。?(2)能力目標:培養(yǎng)學生的觀察能力、歸納能力,增強數形結合的思維意識。
2025-05-16 02:09
【總結】第三節(jié)函數的單調性與最值基礎梳理:在函數y=f(x)的定義域內的一個區(qū)間A上,如果對于任意兩個數x1,x2A,當x1x2時,都有________________,那么就說f(x)在_______上是增加的(減少的).注意:(1)函數的單調性是在________內
2024-11-12 01:26
【總結】【高考地位】導數在研究函數的極值與最值問題是高考的必考的重點內容,已由解決函數、數列、不等式問題的輔助工具上升為解決問題的必不可少的工具,特別是利用導數來解決函數的極值與最值、零點的個數等問題,在高考中以各種題型中均出現(xiàn),對于導數問題中求參數的取值范圍是近幾年高考中出現(xiàn)頻率較高的一類問題,其試題難度考查較大.【方法點評】類型一利用導數研究函數的極值使用情景:一般函數類型
2025-03-25 23:06
【總結】高二數學-導數的定義,幾何意義,運算,單調性與極最值問題(一)導數的定義:①在處的導數(或變化率)記作.②在的導函數記作.=x2+1的圖象上取一點(1,2)及附近一點(1+Δx,2+Δy),則為(),.C. D.()D. 1-3.①若,則②若f(x)=,則①(C)′=
2025-01-14 12:18
【總結】(4).對數函數的導數:.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數函數的導數:.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數:
2025-01-18 17:16
【總結】1.3導數在研究函數中的應用1.3.1函數的單調性與導數本節(jié)重點:利用導數研究函數的單調性.本節(jié)難點:用導數求函數單調區(qū)間的步驟.(5)對數函數的導數:.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數函數的導數:.)()1(xx
2024-10-19 11:54
【總結】利用函數的單調性(最值)求參數的取值范圍例1.已知函數),0()(2Raxxaxxf????,若)(xf在????,2上為增函數,求實數a的取值范圍.跟蹤訓練:1.已知函數????????,2),0()(2xaxaxxf上遞增,求實數a的取值范圍.2.若函數xxm
2024-11-09 06:38
【總結】教學目標?:掌握用導數的符號判別函數增減性的方法,提高對導數與微分的學習意義的認識.?:訓練解題方法,培養(yǎng)解題能力。?:能用普遍聯(lián)系的觀點看待事物,抓住引起事物變化的主要因素。?:數學方法的廣泛應用之美,數學內容的統(tǒng)一性。重點:利用導數的符號確定函數的單調區(qū)間。難點:利用導數的符號確定函數的單調區(qū)間.單調性的概念
2024-11-06 23:03
【總結】一、課內訓練:1.確定下列函數的單調區(qū)間(1)y=x3-9x2+24x(2)y=x-x3(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)令3(x-2)(x-4)>0,解得x>4或x<2.∴y=x3-9x2+24x的單調增區(qū)間是(4,+∞)和(-∞,2)令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的
2025-03-24 12:17
【總結】單調性與最大(?。┲档谝徽n時函數單調性的概念問題提出德國有一位著名的心理學家艾賓浩斯,對人類的記憶牢固程度進行了有關研究.他經過測試,得到了以下一些數據:時間間隔t剛記憶完畢20分鐘后60分鐘后8-9小時后1天后2天后6天后
2025-07-18 14:14
【總結】函數單調的概念?我們在函數的基本性質中曾經討論過函數的單調性問題,在此我們再次回顧一下函數單調的定義。?定義設函數f(x)在區(qū)間(a,b)上有定義,如果對于區(qū)間(a,b)內的任意兩點x1,x2,滿足?(1)當x1x2時,恒有f(x1)?f(x2)(或f(x1)f(x2))
2025-08-15 20:29
【總結】函數單調性與導數羅田縣駱駝坳中學教學目標分析教學內容解析教學問題診斷教學對策分析教學基本流程教學設計教學過程設計數學課程標準要求學生把導數作為研究變量和函數的重要方法和手段,了解導數在研究單調性、極值、最值上的重要作用,體會導數的思想和基本內涵,了解
2024-11-22 01:56