【總結(jié)】全等三角形輔助線系列之一與角平分線有關(guān)的輔助線作法大全一、角平分線類輔助線作法角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等.對于有角平分線的輔助線的作法,一般有以下四種.1、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等:過角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來證明問題;2、截取構(gòu)全等利用對稱性,在角的兩邊截取相等的線段,
2025-07-24 05:40
【總結(jié)】梯形中常見輔助線課件制作:王從亮課件審核:田學(xué)銀例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCA
2024-11-10 03:18
【總結(jié)】LJ版九年級(jí)下第五章圓階段方法技巧訓(xùn)練(三)專訓(xùn)2圓中常用的作輔助線的八種方法4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示61235見習(xí)題見習(xí)題見習(xí)題C見習(xí)題見習(xí)題978見習(xí)題見習(xí)題見習(xí)題1.如圖,兩正方形彼
2025-03-13 08:02
【總結(jié)】階段技巧專訓(xùn)構(gòu)造圓的基本性質(zhì)的基本圖形時(shí)常用作輔助線的技巧第三章圓提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示6見習(xí)題1234見習(xí)題見習(xí)題7或175見習(xí)題121.如圖,四邊形ABCO是菱形,點(diǎn)A,B,C在⊙O上.若⊙O的半徑是6,求弦AC的長.解:連接O
2025-03-13 07:25
【總結(jié)】無為三中八年級(jí)數(shù)學(xué)專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法(2022年安徽)如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個(gè)就能推出△ABC是等腰三角形的是_________________。(把所有正確答案的序號(hào)都填寫在橫線上)①∠BA
2025-05-06 12:02
【總結(jié)】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡單的新圖形,則能使原問題的本質(zhì)得到充分的顯示,通過對新圖形的分析,原問題順利獲解。有許多初中幾何常見輔助線作法歌訣,下面這一套是很好的:人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-04-04 03:02
【總結(jié)】梯形中常見輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCAF2.如圖,在梯形ABCD中,A
2024-11-03 23:14
【總結(jié)】BS版八年級(jí)下階段核心方法角平分線中常用作輔助線的方法第一章三角形的證明4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示123見習(xí)題見習(xí)題見習(xí)題見習(xí)題1.如圖,在△ABC中,AD平分∠BAC,∠C=2∠B.求證:AC+CD=AB.證
2025-03-12 12:19
【總結(jié)】BS版九年級(jí)下階段核心技巧構(gòu)造圓的基本性質(zhì)的基本圖形的六種常用作輔助線的技巧第三章圓4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示61235C見習(xí)題D見習(xí)題見習(xí)題見習(xí)題1.【2023·臨沂】如圖,在⊙O中,AB為直徑,∠
【總結(jié)】HK版九年級(jí)下階段核心技巧構(gòu)造圓的基本性質(zhì)的基本圖形的六種常用作輔助線的技巧第24章圓4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示1235見習(xí)題見習(xí)題見習(xí)題6見習(xí)題見習(xí)題見習(xí)題1.如圖,CD是⊙O的直徑,點(diǎn)A在DC的延長線上,
2025-03-12 12:18
【總結(jié)】立體幾何作輔助線的一般思路和常用方法做立體幾何題,性質(zhì)定理是打開解題思路的關(guān)鍵,也是引入輔助線的基礎(chǔ),它可告訴我們應(yīng)該如何作輔助線,其中最常用的是線面平行和面面垂直性質(zhì)定理。1、若題中給出直線a∥面α這一條件,做題時(shí)首先考慮的是:要運(yùn)用線面平行的性質(zhì)定理,對照該定理中的條件就會(huì)想到應(yīng)過a作一平面β和α相交于b,則得a∥b,然后再根據(jù)其
2025-01-21 13:41
【總結(jié)】梯形中的常見輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2025-06-22 16:00
【總結(jié)】專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法“周長問題”的轉(zhuǎn)化Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形適用情況:圖中已經(jīng)存在兩個(gè)點(diǎn)—X和Y語言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線
2025-08-01 16:44
【總結(jié)】例1:已知如圖1-1:D、E為△ABC內(nèi)兩點(diǎn),求證:AB+AC>BD+DE+CE.例如:如圖2-1:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC>∠BAC。分析:因?yàn)椤螧DC與∠BAC不在同一個(gè)三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;例如:如圖3-1:已知A
2025-07-23 03:37
【總結(jié)】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對
2025-03-24 07:41