【總結(jié)】專業(yè)資料分享人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,
2025-03-24 12:33
【總結(jié)】XJ版七年級(jí)下階段核心類型平行線中作輔助線的九種常見類型第4章相交線與平行線4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示1235見習(xí)題B見習(xí)題6見習(xí)題見習(xí)題見習(xí)題7見習(xí)題8見習(xí)題提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示
2025-03-12 12:19
【總結(jié)】200*1504K282*2829K329*24510K????295*24610K329*24510K333*2909K????365*26710K400*34814K
2025-04-14 02:46
【總結(jié)】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2024-10-22 17:05
【總結(jié)】第二講三大模型輔助線模塊一手拉手模型△ACD、△CBE為等邊△,A、C、B共線△ACD、△CBE為等邊△,AC、BC夾角任意△ACD、△CBE為頂角相同的等腰△ △ACD、△CBE可繞公共點(diǎn)任意旋轉(zhuǎn)例題1.如圖,等腰Rt△OAB,等腰Rt△OCD,∠AOB=∠COD=90o,M、N分別是AC、BD的中點(diǎn),求證:①∠1=∠2;②AC⊥BD;
2025-07-26 10:27
【總結(jié)】圓的常用輔助線及作法嘗試練習(xí)一嘗試練習(xí)二數(shù)學(xué)歌訣作法及應(yīng)用弦心距直徑圓周角切線徑兩圓相切公切線中點(diǎn)圓心線兩圓相交公共弦嘗試練習(xí)圓的常用輔助線及作法常用思想圓是初中幾何學(xué)習(xí)中重要內(nèi)容,學(xué)好圓的有關(guān)知識(shí),掌握正確的解題方法,對(duì)于提高學(xué)生
2025-01-18 17:52
【總結(jié)】梯形中常見輔助線課件制作:王從亮課件審核:田學(xué)銀例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長(zhǎng)兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCA
2024-11-10 03:18
【總結(jié)】中點(diǎn)常見的輔助線中點(diǎn)經(jīng)常所在的三角形:全等三角形等腰三角形:三線合一直角三角形:斜邊上的中線、三角形的中位線:一、一個(gè)中點(diǎn)常見的輔助線(1)利用中點(diǎn)構(gòu)建全等形:倍長(zhǎng)中線至二倍,構(gòu)建全等三角形(2)有中點(diǎn)聯(lián)想直角三角形的斜邊上的中線(3)由中點(diǎn)聯(lián)想到等腰三角形的“三線合一”1、在△ABC中,AD是BC邊上的中線,若AB=2,AC=4,則AD的取值范圍是_
2025-03-22 11:22
【總結(jié)】例1:已知如圖1-1:D、E為△ABC內(nèi)兩點(diǎn),求證:AB+AC>BD+DE+CE.例如:如圖2-1:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC>∠BAC。分析:因?yàn)椤螧DC與∠BAC不在同一個(gè)三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;例如:如圖3-1:已知A
2025-07-23 03:37
【總結(jié)】HK版七年級(jí)下階段核心歸類平行線中常見作輔助線的九種類型第10章相交線、平行線與平移4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示1235見習(xí)題B見習(xí)題6見習(xí)題見習(xí)題見習(xí)題7見習(xí)題8見習(xí)題提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示
2025-03-12 12:18
【總結(jié)】DCBAEDCBA常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形。2)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,構(gòu)造全等三角形。3)截長(zhǎng)法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長(zhǎng),是之與特定線段相等,再利用三角形全
2024-12-08 00:46
【總結(jié)】......初中數(shù)學(xué)輔助線的添加淺談人們從來就是用自己的聰明才智創(chuàng)造條件解決問題的,當(dāng)問題的條件不夠時(shí),添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立已知與未知的橋梁,把問題轉(zhuǎn)化為自己能解決的問題,這是解決問題常用
2025-08-03 00:57
【總結(jié)】平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動(dòng)腦筋A(yù)BCDEEFABCDABCDO平
2024-11-12 02:37
【總結(jié)】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”
2025-06-19 21:56
【總結(jié)】專業(yè)資料分享三角形中作輔助線的常用方法舉例一、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與
2025-08-03 01:15