【摘要】方法總結(jié)求解圓錐曲線離心率的取值范圍求圓錐曲線離心率的取值范圍是高考的一個熱點,也是一個難點,求離心率的難點在于如何建立不等關(guān)系定離心率的取值范圍.一、直接根據(jù)題意建立不等關(guān)系求解.例1:(2008湖南)若雙曲線(a>0,b>0)上橫坐標為的點到右焦點的距離大于它到左準線的距離,則雙曲線離心率的取值范圍是A.(1,2) B.(2,+) C.(1,5)
2024-08-20 08:31
【摘要】解析幾何專題六1????1()(2)2ee圓錐曲線的統(tǒng)一性、和諧性從方程的形式看,在直角坐標系中,三類曲線的方程都是二元二次的,所以也叫二次曲線.從點的集合或軌跡的觀點看,它們都是與
2024-11-24 01:26
【摘要】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長為4a(定值)證明:由橢圓的定義即 2、焦點⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當P在短軸上時,∠F1PF2最大證明:
2024-08-20 04:45
【摘要】圓錐曲線中離心率取值范圍的求解范圍問題是數(shù)學中的一大類問題,在高考試題中占有很大的比重,圓錐曲線中離心率取值范圍問題也是高考中解析幾何試題的一個倍受青睞的考查點,其求解策略的關(guān)鍵是建立目標的不等式,建立不等式的方法一般有:利用曲線定義,曲線的幾何性質(zhì),題設指定條件等.策略一:利用曲線的定義例1若雙曲線橫坐標為的點到右焦點的距離大于它到左準線的距離,則雙曲線的離心率的取值范圍是
2024-08-20 04:26
【摘要】利用反證法證明圓錐曲線的光學性質(zhì)迤山中學數(shù)學組賈浩利用反證法證明圓錐曲線的光學性質(zhì)反證法又稱歸謬法,是高中數(shù)學證明中常用的一種方法。利用反證法證明問題的思路為:首先在原命題的條件下,假設結(jié)論的反面成立,然后推理出明顯矛盾的結(jié)果,從而說明假設不成立,則原命題得證。在光的折射定律中,從點發(fā)出的光經(jīng)過直線折射后,反射光
2025-07-01 15:52
【摘要】......學習參考圓錐曲線中離心率及其范圍的求解專題【高考要求】1.熟練掌握三種圓錐曲線的定義、標準方程、幾何性質(zhì),并靈活運用它們解決相關(guān)的問題。2.掌握解析幾何中有關(guān)離心率及其范圍等問題的求解策略;3.靈
2025-04-03 00:03
【摘要】......圓錐曲線的性質(zhì)一、基礎知識(一)橢圓:1、定義和標準方程:(1)平面上到兩個定點的距離和為定值(定值大于)的點的軌跡稱為橢圓,其中稱為橢圓的焦點,稱為橢圓的焦距(2)標準方程:①焦點在軸上的橢
2025-07-01 16:01
【摘要】圓錐曲線軌跡方程的解法目錄一題多解 2一.直接法 3二.相關(guān)點法 6三.幾何法 10四.參數(shù)法 12五.交軌法 14六.定義法 16一題多解設圓C:(x-1)2+y2=1,過原點O作圓的任意弦OQ,求所對弦的中點P的軌跡方程。一.直接法設P(
2025-07-01 19:28
【摘要】WORD資料可編輯圓錐曲線光學性質(zhì)的證明及應用初探一、圓錐曲線的光學性質(zhì)1.1 橢圓的光學性質(zhì):從橢圓一個焦點發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個焦點上;()橢圓的這種光學特性,常被用來設計一些照明設備或聚熱裝置.例如在處放置一個熱源,那
【摘要】雙曲線離心率求法一、雙曲線離心率的求解1、直接求出或求出a與b的比值,以求解。在雙曲線中,1,1.已知雙曲線的一條漸近線方程為y=x,則雙曲線的離心率為2.在給定橢圓中,過焦點且垂直于長軸的弦長為,焦點到相應準線的距離為1,則該橢圓的離心率為3.已知雙曲線-=1(a)的兩條漸近線的夾角為,則雙曲線的離心率為
2025-04-13 05:07
【摘要】圓錐曲線設而不求法典型試題在求解直線與圓錐曲線相交問題,特別是涉及到相交弦問題,最值問題,定值問題的時候,采用“設點代入”(即“設而不求”)法可以避免求交點坐標所帶來的繁瑣計算,同時還要與韋達定理,中點公式結(jié)合起來,使得對問題的處理變得簡單而自然,因而在做圓錐曲線題時注意多加訓練與積累.1.通常情況下如果只有一條直線,設斜率相對容易想一些,或者多條直線但是直線斜率之間存在垂
2024-08-20 04:58
【摘要】WORD資料可編輯圓錐曲線設而不求法典型試題在求解直線與圓錐曲線相交問題,特別是涉及到相交弦問題,最值問題,定值問題的時候,采用“設點代入”(即“設而不求”)法可以避免求交點坐標所帶來的繁瑣計算,同時還要與韋達定理,中點公式結(jié)合起來,使得對問題的處理變得簡單而自然,
2025-04-26 00:20
【摘要】第九章 幾何問題的轉(zhuǎn)換解析幾何幾何問題的轉(zhuǎn)換一、基礎知識:在圓錐曲線問題中,經(jīng)常會遇到幾何條件與代數(shù)條件的相互轉(zhuǎn)化,合理的進行幾何條件的轉(zhuǎn)化往往可以起到“四兩撥千斤”的作用,極大的簡化運算的復雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉(zhuǎn)化。1、在幾何問題的轉(zhuǎn)化
【摘要】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準線方程、焦點坐標等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
【摘要】圓錐曲線復習課橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)與兩個定點的距離的差的絕對值等于常數(shù)與一個定點和一條定直線的距離相等標準方程圖形頂點坐標(±a,0),(0,±b)(±a,0)(0,0))0(12
2024-08-09 03:46