【摘要】橢圓必背的經(jīng)典結(jié)論1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個(gè)端點(diǎn).3.以焦點(diǎn)弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點(diǎn)半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-07-03 04:00
【摘要】1.已知橢圓(a>b>0),O為坐標(biāo)原點(diǎn),P、Q為橢圓上兩動點(diǎn),(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.圓錐曲線性質(zhì)對比橢圓雙曲線焦點(diǎn)三角形面積兩斜率乘積定值A(chǔ)B是橢圓的不平行于對稱軸的弦,M為AB的中點(diǎn),則,即AB是雙曲線(a>0,b>0)的不平行于對稱軸的弦,M為AB的中點(diǎn)
2025-07-03 03:53
【摘要】WORD資料可編輯橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個(gè)端點(diǎn).3.以焦點(diǎn)弦P
2025-04-26 13:13
【摘要】......高考數(shù)學(xué)圓錐曲線部分知識點(diǎn)梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這
2025-04-13 05:07
【摘要】圓錐曲線的性質(zhì)及推廣應(yīng)用江西省撫州一中:張志恒目錄1引言 32圓錐曲線的分類,性質(zhì)及應(yīng)用 4圓錐曲線的分類 4圓錐曲線的性質(zhì) 5圓錐曲線在生活中的應(yīng)用 83圓錐曲線性質(zhì)的推廣應(yīng)用 11直線與圓錐曲線的位置關(guān)系的實(shí)際應(yīng)用 11數(shù)學(xué)問題在圓錐曲線中的推廣 13
2024-08-09 12:41
【摘要】WORD資料可編輯圓錐曲線綜合應(yīng)用及光學(xué)性質(zhì)(通用)一、選擇題(本大題共12小題,每小題5分,共60分)1.二次曲線,時(shí),該曲線的離心率e的取值范圍是 () A. B. C. D.2.我國發(fā)射的“神舟3號”宇宙飛船的運(yùn)行軌道是以地球的中心為
2025-07-03 03:56
【摘要】利用反證法證明圓錐曲線的光學(xué)性質(zhì)迤山中學(xué)數(shù)學(xué)組賈浩利用反證法證明圓錐曲線的光學(xué)性質(zhì)反證法又稱歸謬法,是高中數(shù)學(xué)證明中常用的一種方法。利用反證法證明問題的思路為:首先在原命題的條件下,假設(shè)結(jié)論的反面成立,然后推理出明顯矛盾的結(jié)果,從而說明假設(shè)不成立,則原命題得證。在光的折射定律中,從點(diǎn)發(fā)出的光經(jīng)過直線折射后,反射光
2025-07-01 15:52
【摘要】焦半徑公式:若點(diǎn)是拋物線上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離(稱為焦半徑)是:,焦點(diǎn)弦長公式:過焦點(diǎn)弦長拋物線上的動點(diǎn)可設(shè)為P或或P已知拋物線,過焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),直線的傾斜角為,求證:。直線與拋物線的位置關(guān)系把直線的方程和拋物線的方程聯(lián)立起來得到一個(gè)方程組。(1)方程組有一組解直線與拋物線相交或相切(一個(gè)公共點(diǎn));(2)方程組有二組解直線與
2024-08-09 00:13
【摘要】大慶目標(biāo)教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2);這條曲線叫做方程的曲線.點(diǎn)與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y0)=0;點(diǎn)P0(x0,y0)
2024-08-19 14:02
【摘要】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點(diǎn)坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實(shí)軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-26 00:20
【摘要】數(shù)學(xué)學(xué)科2012學(xué)年年度論文地址:佛山市順德區(qū)陳村鎮(zhèn)青云中學(xué)姓名:匡德智電話:13790039227圓錐曲線中的四點(diǎn)共圓性質(zhì)的應(yīng)用引理:設(shè)兩條直線()與二次曲線:()有四個(gè)交點(diǎn),則這四個(gè)交點(diǎn)共圓的充要條件是證明:由、組成的曲線即:,所以,經(jīng)過它與的四個(gè)交點(diǎn)
2025-07-01 23:13
【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座33)—圓錐曲線方程及性質(zhì)一.課標(biāo)要求:1.了解圓錐曲線的實(shí)際背景,感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用;2.經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標(biāo)準(zhǔn)方程、幾何圖形及簡單性質(zhì);3.了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道雙曲線的有關(guān)性質(zhì)。二.命題
2025-07-08 16:30
【摘要】......橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,
2025-04-26 13:07
【摘要】橢圓中的相關(guān)問題一、橢圓中的最值問題:,內(nèi)有一點(diǎn),為橢圓上任意一點(diǎn),若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點(diǎn),若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點(diǎn)橢圓到兩焦點(diǎn)橢圓,的距離之積的最大值是,最小值是。4.設(shè),則的
2024-08-05 11:38
【摘要】第十章圓錐曲線★知識網(wǎng)絡(luò)★橢圓雙曲線拋物線定義定義定義標(biāo)準(zhǔn)方程標(biāo)準(zhǔn)方程幾何性質(zhì)幾何性質(zhì)應(yīng)用應(yīng)用標(biāo)準(zhǔn)方程幾何性質(zhì)應(yīng)用圓錐曲線直線與圓錐曲線位置關(guān)系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和為常數(shù)的動點(diǎn)的軌跡叫橢圓,
2024-08-19 09:58