【摘要】解析幾何專題·經(jīng)典結論收集整理:宋氏資料2016-1-1有關解析幾何的經(jīng)典神級結論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應準線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2024-08-20 04:54
【摘要】軌跡方程的若干求法,供同學們參考.一、直接法直接根據(jù)等量關系式建立方程. 例1 已知點,動點滿足,則點的軌跡是( ?。 。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點軌跡為拋物線.故選D. 二、定義法 運用有關曲線的定義求軌跡方程. 例2 在中,上的兩條中線長度之和為39,求的重心的軌跡方程.
2025-07-29 00:18
【摘要】......有關解析幾何的經(jīng)典結論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.
2025-07-01 16:01
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-08-03 00:15
【摘要】一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應準線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩條切線
2025-07-03 18:05
【摘要】橢圓必背的經(jīng)典結論1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應準線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-07-03 04:00
【摘要】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
2025-04-03 00:04
【摘要】......中點弦問題專題練習 一.選擇題(共8小題)1.已知橢圓,以及橢圓內(nèi)一點P(4,2),則以P為中點的弦所在直線的斜率為( ?。.B.C.2D.﹣22.已知A(
【摘要】......圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( )A.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪
2025-07-03 02:10
【摘要】....圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( )A.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點,F(xiàn)
2025-07-02 07:21
【摘要】WORD資料可編輯橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦P
2025-04-26 13:13
【摘要】......圓錐曲線32題1.如圖所示,,分別為橢圓:()的左、右兩個焦點,,為兩個頂點,已知橢圓上的點到,兩點的距離之和為. (1)求橢圓的方程;(2)過橢圓的焦點作的平行線交
2025-04-02 04:35
【摘要】大慶目標教育圓錐曲線一、知識結構在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-13 14:02
【摘要】圓錐曲線內(nèi)容梳理與常見問題類型解答寧夏銀川一中張德萍圓錐曲線是高中數(shù)學的重、難點,是每年高考的主干考點,它包含的內(nèi)容豐富、題型多樣.表12022-2022年高考全國卷對圓錐曲線的總體考查情況題型(題號/內(nèi)容)題合計試卷所占年份考卷數(shù)
2024-08-20 04:30
【摘要】......經(jīng)典例題精析類型一:求曲線的標準方程 1.求中心在原點,一個焦點為且被直線截得的弦AB的中點橫坐標為的橢圓標準方程. 思路點撥:先確定橢圓標準方程的焦點的位置(定位),選擇相應的標準方程,再利用待