【導(dǎo)讀】x+3=2,x2-3x-4=0,p=1,q=-4.8.向量a,b,c在正方形網(wǎng)格中的位置如圖所示,若c=λa+μb,2-y2=2,解得??2=-4m2+9m-2.易證λm=2-2m在[14,2]上是增函數(shù),四邊形OABP能否成為平行四邊形?若能,則求出t的值;若不能,請(qǐng)說(shuō)。若P在x軸上,則2+3t=0,所以t=-23;若P在第三象限,則???
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=
2024-11-11 21:10
【總結(jié)】第二章一、選擇題1.已知數(shù)軸上A點(diǎn)坐標(biāo)為-5,AB=-7,則B點(diǎn)坐標(biāo)是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設(shè)a與b是兩個(gè)不共線的向量,且向量a+λb與-(b
2024-11-27 23:46
【總結(jié)】一、選擇題1.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關(guān)系是()A.B=A∩CB.B∪C=CC.ACD.A=B=C【解析】銳角大于0°小于90°,故CB,選項(xiàng)B正確.【答案】B2.把-1
2024-11-28 01:55
【總結(jié)】自學(xué)目標(biāo)1、掌握平行向量基本定理;2、掌握軸上向量的座標(biāo)及其運(yùn)算。學(xué)習(xí)過程[來(lái)源:.Com]一、課前準(zhǔn)備(預(yù)習(xí)教材77頁(yè)~79頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標(biāo)及其運(yùn)算:①已知軸l,取單位向
【總結(jié)】§向量的減法(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、如果把兩個(gè)向量的始點(diǎn)放在一起,則這兩個(gè)向量的差是以為起點(diǎn),為終點(diǎn)的向量。2、一個(gè)向量BA等于它的終點(diǎn)相對(duì)于點(diǎn)O的位置向量___減去它的始點(diǎn)相對(duì)于點(diǎn)O的位置向量___,或簡(jiǎn)記為
2024-11-18 16:44
【總結(jié)】一、選擇題1.2sin2α1+cos2α·cos2αcos2α=()A.tan2αB.tanαC.1【解析】原式=2sin2α2cos2α·cos2αcos2α=tan2α.【答案】A2.函數(shù)f(x)=sinxcosx的最小值是()
2024-11-27 23:35
【總結(jié)】一、選擇題1.|a|=1,|b|=2,c=a+b且c⊥a,則a與b的夾角為()A.30°B.60°C.120°D.150°【解析】c⊥a,設(shè)a與b的夾角為θ,則(a+b)·a=0,所以a2+a·b=0,所以a2+
2024-11-27 23:43
【總結(jié)】教學(xué)設(shè)計(jì)一、課前延伸預(yù)習(xí)檢測(cè):判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點(diǎn)必在一條直線上。()(3)若干個(gè)向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【總結(jié)】一、選擇題1.下列各式與tanα相等的是()A.1-cos2α1+cos2αB.sinα1+cosαC.sinα1-cos2α-cos2αsin2α【解析】1-cos2αsin2α=2sin2α2sinαcosα=sinαcosα=tanα.【答
【總結(jié)】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式及其簡(jiǎn)單運(yùn)用二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的性質(zhì)及運(yùn)算律.二.新課學(xué)習(xí)::兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
【總結(jié)】第二章一、選擇題1.已知a=(-2,-3)、b=(32,-1),則向量a與b的夾角為()A.π6B.π4C.π3D.π2[答案]D[解析]由a·b=-2×32+(-3)×(-1)=0,∴a⊥b.2.(2021·河
【總結(jié)】課題向量共線的條件課型新授課時(shí)1時(shí)間第4周主備人教研組長(zhǎng)包組領(lǐng)導(dǎo)編號(hào)教學(xué)目標(biāo)、單位向量、軸上的坐標(biāo)公式、數(shù)軸上的兩點(diǎn)間的距離公式;;教學(xué)內(nèi)容教學(xué)設(shè)計(jì)課前預(yù)習(xí)案知識(shí)鏈接:1.若有向量a?(a??0)、b?,實(shí)數(shù)λ,使b?=λ
【總結(jié)】一、選擇題1.cos45°cos15°+sin15°sin45°的值為()A.-32B.32C.22D.-22【解析】cos45°cos15°+sin15°sin45°=cos(45°-15°
2024-11-27 23:39
【總結(jié)】一、選擇題1.tan75°-tan15°1+tan75°tan15°=()A.-2B.2C.-3D.3【解析】原式=tan(75°-15°)=tan60°=3.【答案】D2.已知tanα+tanβ=2,tan
2024-11-28 01:12
【總結(jié)】一、選擇題1.化簡(jiǎn):sin21°cos81°-cos21°sin81°=()B.-12C.32D.-32【解析】sin21°cos81°-cos21°sin81°=sin(21°-81°)=-s