【導讀】則由實數(shù)與向量積的定。為共線向量,若a?共線的充要條件是:有且只有一個非零實。量,零向量與任意向量共線。,由此得兩點A、B之間的距離為||||21xxAB??。、1、5,則下列結論錯誤的是()。一.自主探究,形成概念。如果向量的基線互相平行或重合,則稱向量共線或互相平行。例1.設a,b是兩個不共線的向量,已知AB=a+b,BC=2a+8b,CD=3(a-b),跟蹤練習2:已知軸l上A、B、C、D四點坐標分別為2、-3、-1、4求AB,
【總結】向量共線的條件和軸上向量的坐標運算一般地,實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘運算,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當λ0時,λa的方向與a方向相同;當λ0時,λa的方向與a方向相反;特別地,當
2025-11-02 21:10
【總結】向量數(shù)量積的坐標運算與度量公式一、學習要點:向量數(shù)量積的坐標運算與度量公式及其簡單運用二、學習過程:一.復習回顧:平面向量數(shù)量積的性質及運算律.二.新課學習::兩個向量的數(shù)量積等于它們對應坐標的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
2025-11-09 16:44
【總結】復習1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2025-11-08 17:33
【總結】2.3.2向量數(shù)量積的運算律一、學習要點:向量數(shù)量積的運算律及其簡單運用二、學習過程:一.復習回顧:平面向量數(shù)量積的定義及其幾何意義、性質:二.新課學習::(1)(2)(3)
【總結】2.1.1向量的概念一.學習要點:向量的有關概念二.學習過程:一、復習:在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質量等.還有一些量,如我們在物理中所學習的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學習::
2025-11-18 23:47
【總結】2.1.3向量的減法一.學習要點:向量的減法二.學習過程:一、復習:向量加法的法則:二、新課學習:1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
2025-11-18 23:46
【總結】雙基達標?限時20分鐘?1.已知A(3,1),B(2,-1),則BA→的坐標是().A.(-2,-1)B.(2,1)C.(1,2)D.(-1,-2)解析BA→=(3,1)-(2,-1)=(3-2,1+1)=(1,2).答案
【總結】2.1.4數(shù)乘向量一.學習要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學習過程:一、復習引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
【總結】撰稿教師:李麗麗自學目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學會求向量的模長;3.注意向量的特點:可以平行移動學習重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學習過程一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學(一)問題探
【總結】§向量的加法(課前預習案)班級:___姓名:________編寫:一、新知導學a,b在平面上任取一點A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
【總結】學習目標1、掌握向量的加法運算,并理解其幾何意義;2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結合解決問題的能力;一、※課前準備(預習教材80頁~83頁,找出疑惑之處)二、※新課導學:1,回答以下問題(1)某
【總結】§向量的概念(課前預習案)班級:___姓名:________編寫:一、新知導學1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可
【總結】第二章一、選擇題1.已知a=(-2,-3)、b=(32,-1),則向量a與b的夾角為()A.π6B.π4C.π3D.π2[答案]D[解析]由a·b=-2×32+(-3)×(-1)=0,∴a⊥b.2.(2021·河
2025-11-18 23:43
【總結】一、選擇題1.設平面向量a=(3,5),b=(-2,1),則a-2b等于()A.(7,3)B.(7,7)C.(1,7)D.(1,3)【解析】a-2b=(3,5)-2(-2,1)=(3,5)-(-4,2)=(7,3).【答案】A2.若向量a=(x+3,x2-3x-
【總結】§數(shù)乘向量(課前預習案)班級:___姓名:________編寫:一、新知導學1、實數(shù)λ與向量a的乘積是一個向量,記作;|a?|=。2、a?的方向當λ0時,與a;當λ<