【導讀】∴a+b=+=(0,0)=0,5.已知a=且a=xi+yj,則x=________,y=________.③一個坐標對應于唯一的一個向量;10.設m=(a,b),n=(c,d),規(guī)定兩向量之間的一個運算為m?解析設q=(x,y),則由題意可知???11.如圖,已知四邊形ABCD為平行四邊形,O為對角線AC,BD的交點,若能,求出相應的t值?當3t+1=0,即t=-13時,點P在y軸上;
【總結】習題課數列求和雙基達標限時20分鐘1.設數列1,(1+2),(1+2+4),…,(1+2+22+…+2n-1)的前m項和為2036,則m的值為().A.8B.9C.10D.11解析an=2n-1,Sn=2n+1-n-2,代入選項檢驗即得m=10.答
2024-11-27 23:54
【總結】雙基達標?限時20分鐘?1.下列角中,終邊與330°角終邊相同的是().A.-630°B.-1830°C.30°D.990°解析與330°角終邊相同的角α=330°+k·360°(k
2024-11-27 23:51
【總結】第二章一、選擇題1.已知數軸上A點坐標為-5,AB=-7,則B點坐標是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設a與b是兩個不共線的向量,且向量a+λb與-(b
2024-11-27 23:46
【總結】【創(chuàng)新設計】2021-2021學年高中數學(人教B版)必修5正弦定理雙基達標限時20分鐘1.在△ABC中,若∠B=135°,AC=2,則BCsinA=().A.2B.1C.2D.22解析△ABC中,由正弦定理BCsin
2024-11-28 02:11
【總結】自學目標1、掌握平行向量基本定理;2、掌握軸上向量的座標及其運算。學習過程[來源:.Com]一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標及其運算:①已知軸l,取單位向
【總結】§向量的減法(課前預習案)班級:___姓名:________編寫:一、新知導學1、如果把兩個向量的始點放在一起,則這兩個向量的差是以為起點,為終點的向量。2、一個向量BA等于它的終點相對于點O的位置向量___減去它的始點相對于點O的位置向量___,或簡記為
2024-11-18 16:44
【總結】數列的遞推公式(選學)1.數列{an}滿足an+1=an+n,且a1=1,則a5的值為().A.9B.10C.11D.12解析a5=a4+4=a3+3+4=a2+2+3+4=a1+1+2+3+4=11.答案C2.已知數列{an}的首項為a1=1,且滿
【總結】教學設計一、課前延伸預習檢測:判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點必在一條直線上。()(3)若干個向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【總結】不等式的性質雙基達標限時20分鐘1.已知a,b,c,d∈R且ab0,-ca-db,則().A.bcadbd0,∴在-ca-db兩側乘ab不變號,即-bc-ad,即bcad.答
【總結】雙基達標?限時20分鐘?1.函數y=-sinx,x∈??????-π2,3π2的簡圖是().解析由y=sinx與y=-sinx的圖象關于x軸對稱可知選D.答案D2.在[0,2π]內,不等式sinx-32的解集是().A.(0,
2024-11-27 23:47
【總結】雙基達標?限時20分鐘?1.計算sin(-1380°)的值為().A.-12C.-32D.32解析sin(1380°)=sin[60°+(-4)×360°]=sin60°=32.答案
【總結】雙基達標?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設α∈??????0,π2,若sinα=35,則2cos
2024-11-28 01:12
【總結】雙基達標?限時20分鐘?1.函數y=3sin??????2x+π6的圖象的一條對稱軸方程是().A.x=0B.x=2π3C.x=-π6D.x=π3解析令sin??????2x+π6=±1,得2x+π6=kπ+π2(k∈Z),即x=k2π
【總結】向量數量積的坐標運算與度量公式一、學習要點:向量數量積的坐標運算與度量公式及其簡單運用二、學習過程:一.復習回顧:平面向量數量積的性質及運算律.二.新課學習::兩個向量的數量積等于它們對應坐標的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
【總結】第二章一、選擇題1.已知a=(-2,-3)、b=(32,-1),則向量a與b的夾角為()A.π6B.π4C.π3D.π2[答案]D[解析]由a·b=-2×32+(-3)×(-1)=0,∴a⊥b.2.(2021·河
2024-11-27 23:43