【導(dǎo)讀】則存在唯一實數(shù)?例2在直角坐標(biāo)系xOy內(nèi),A,B(0,1),C(2,5),求證A,B,C三點共線。例3設(shè)點P是線段P1P2上的一點,P1、P2的坐標(biāo)分別是,.當(dāng)點P是線段P1P2的中點時,求點P的坐標(biāo);=共線且方向相同,求x. (,),(,)abx131,且//ab,則x=()。A.3B.-3C.13D.13?與AB平行且方向相反的向量a的是()
【總結(jié)】教學(xué)設(shè)計一、課前延伸預(yù)習(xí)檢測:判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點必在一條直線上。()(3)若干個向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
2024-11-18 16:44
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo)1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學(xué)會求向量的模長;3.注意向量的特點:可以平行移動學(xué)習(xí)重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材77頁~79頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)問題探
2024-11-27 23:47
【總結(jié)】§向量的加法(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)a,b在平面上任取一點A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
2024-11-27 23:46
【總結(jié)】學(xué)習(xí)目標(biāo)1、掌握向量的加法運算,并理解其幾何意義;2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;一、※課前準(zhǔn)備(預(yù)習(xí)教材80頁~83頁,找出疑惑之處)二、※新課導(dǎo)學(xué):1,回答以下問題(1)某
【總結(jié)】§數(shù)乘向量(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、實數(shù)λ與向量a的乘積是一個向量,記作;|a?|=。2、a?的方向當(dāng)λ0時,與a;當(dāng)λ<
【總結(jié)】§向量的概念(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo),并理解其幾何意義。2.理解和應(yīng)用向量數(shù)乘的運算律。學(xué)習(xí)過程一、※課前準(zhǔn)備(預(yù)習(xí)教材86頁~87頁,找出疑惑之處)二、※新課導(dǎo)學(xué)1.?dāng)?shù)乘定義:______________________是一個向量,記作a?,它的長度與方向規(guī)定如下:(1)||a?=____
【總結(jié)】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點、終點的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個向量a=(x1,y
2024-11-28 00:13
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1、理解平面向量的正交分解。聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運算。2、會用坐標(biāo)表示平面向量的加法、減與數(shù)乘運算。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材99頁~102頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)向量的正交分解1、如果兩個向量的基線互相垂直,則稱這兩個向量,
【總結(jié)】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過實例了解如何用坐標(biāo)表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點)2.理解用坐標(biāo)表示的平面向量共線的條件,并會應(yīng)用.(重點)3.會根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點)1.平面向量共線的坐標(biāo)表示2
2024-11-19 19:09
【總結(jié)】平面向量共線的坐標(biāo)表示一、求點P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實數(shù)λ的值.例1已知點A(-2,-3),點B(4,1),延長AB到P,使|AP|=3|PB|,求點P的坐標(biāo).解:因為點在AB的延長線上,P為AB的外分點,所以AP=λPB,λ0
2024-11-19 17:32
【總結(jié)】2.1.1向量的概念一.學(xué)習(xí)要點:向量的有關(guān)概念二.學(xué)習(xí)過程:一、復(fù)習(xí):在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學(xué)習(xí)的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學(xué)習(xí)::
【總結(jié)】第一頁,編輯于星期六:點三十三分。,2.3.4平面向量共線的坐標(biāo)表示,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十三分。,第四頁,編輯于星期六:點...
2024-10-22 18:49
【總結(jié)】2.1.3向量的減法一.學(xué)習(xí)要點:向量的減法二.學(xué)習(xí)過程:一、復(fù)習(xí):向量加法的法則:二、新課學(xué)習(xí):1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)