【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
2024-11-27 23:46
【總結(jié)】第二章一、選擇題1.設(shè)e1、e2是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1D.e2和e1+e2[答案]B[解析]∵4e2-6e1=-2(3e1-2
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點共線問題例1.O是坐標(biāo)原點,OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時,A、B、C三點共線?[分析]由A、B、C三點共線可知,AB→、AC→、BC→中任兩個共線,由坐標(biāo)表示的共線條件解方
2024-11-19 20:38
【總結(jié)】綜合檢測(二)第二章平面向量(時間:90分鐘,滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列說法中,正確的是()A.若向量|a|=|b|,則a=b或a=-bB.若a∥b,b∥c,則a∥cC.長度不相
2024-11-28 01:55
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線的坐標(biāo)表示課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量共線的判定1、2、310由向量共線求參數(shù)56、7、8向量共線的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【總結(jié)】章末質(zhì)量評估(二)(時間:90分鐘滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.給出下列等式:(1)a·0=0;(2)0·a=0;(3)若a,b同向共線,則a·b=|a|
2024-11-27 23:35
【總結(jié)】§2.平面向量共線的坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題?!局R梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實數(shù)使//ab?;反之,存在唯一實數(shù)?。使//
2024-11-30 13:46
【總結(jié)】§向量在幾何中的應(yīng)用(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.兩個向量的數(shù)量積:2.平面兩向量數(shù)量積的坐標(biāo)表示:3.向量平
2024-11-19 06:26
【總結(jié)】向量共線的條件和軸上向量的坐標(biāo)運算一般地,實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘運算,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時,λa的方向與a方向相同;當(dāng)λ0時,λa的方向與a方向相反;特別地,當(dāng)
2024-11-18 12:10
【總結(jié)】階段性測試題二(第二章綜合測試題)本試卷分第Ⅰ卷選擇題和第Ⅱ卷非選擇題兩部分,滿分150分,時間120分鐘。第Ⅰ卷(選擇題共60分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,其中有且僅有一個是正確的.)1.(2021·山東煙臺高一期末測試)已知向量a=(
2024-11-28 01:11
【總結(jié)】課題:平面向量復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對知識進行一次梳理,突出知識間的內(nèi)在聯(lián)系,提高綜合運用向量知識解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【總結(jié)】雙基達標(biāo)?限時20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
【總結(jié)】《平面向量共線的坐標(biāo)表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標(biāo)運算延伸的作用,它是在學(xué)生對平面向量的基本定理有了充分的認(rèn)識和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標(biāo)表示則為用“數(shù)”的運算處理“形”的問題搭建了橋梁,同時也為定比分點坐標(biāo)公式和中點坐標(biāo)公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標(biāo)表示,對立體幾何教材也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
【總結(jié)】平面向量的坐標(biāo)表示與運算OxyijaA(x,y)a1.以原點O為起點作,點A的位置由誰確定?aOA?由a唯一確定2.點A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系?兩者相同向量a坐標(biāo)(x,y)一一對應(yīng)復(fù)習(xí)回顧已知
2024-11-18 12:09
【總結(jié)】平面向量的坐標(biāo)運算學(xué)習(xí)目標(biāo):1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個向量和、差及數(shù)乘向量的坐標(biāo)運算法則.3.正確理解向量坐標(biāo)的概念,要把點的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.【學(xué)法指導(dǎo)】1.向量的正交分解是把一個向量分解為兩個互相垂直的向量,是向量坐標(biāo)表示的理論依據(jù).向量的坐標(biāo)表示
2024-11-19 17:41