【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
2024-11-27 23:46
【總結(jié)】§2.平面向量的基本定理【學(xué)習(xí)目標、細解考綱】;.【知識梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內(nèi)兩個的向量,a?是這一平面內(nèi)的任一向量,那么有且只有一對實數(shù),21,??使。其中,不共線的這兩個向量,1e?2e?叫做表示這一平
2024-11-30 13:51
【總結(jié)】第二章一、選擇題1.已知數(shù)軸上A點坐標為-5,AB=-7,則B點坐標是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設(shè)a與b是兩個不共線的向量,且向量a+λb與-(b
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.3平面向量的基本定理及坐標表示2.3.1平面向量基本定理,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分...
2025-10-13 18:48
【總結(jié)】2.3向量的坐標表示2.平面向量基本定理情景:“神舟”十號宇宙飛船在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度.在力的分解的平行四邊形法則中,我們看到一個力可以分解為兩個不共線方向的力的和.思考:平面內(nèi)任一向量是否可以用兩個不共線的向量來表示呢?1.如果e1,e2是同一平面內(nèi)
2024-12-05 10:15
【總結(jié)】課題:平面向量基本定理班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標】1、了解平面向量基本定理;2、掌握平面向量基本定理及其應(yīng)用?!菊n前預(yù)習(xí)】1、共線向量基本定理一般地,對于兩個向量??baa,0?,如果有一個實數(shù)?,使_______
2024-11-19 21:43
【總結(jié)】第二章一、選擇題1.若a·c=b·c(c≠0),則()A.a(chǎn)=bB.a(chǎn)≠bC.|a|=|b|D.a(chǎn)在c方向上的正射影的數(shù)量與b在c方向上的正射影的數(shù)量必相等[答案]D[解析]∵a·c=b·c,∴|a|·|c|cos&
2024-11-27 23:43
【總結(jié)】撰稿教師:李麗麗自學(xué)目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學(xué)會求向量的模長;3.注意向量的特點:可以平行移動學(xué)習(xí)重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學(xué)習(xí)過程一、課前準備(預(yù)習(xí)教材77頁~79頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)問題探
2024-11-27 23:47
【總結(jié)】§向量的加法(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)a,b在平面上任取一點A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
【總結(jié)】學(xué)習(xí)目標1、掌握向量的加法運算,并理解其幾何意義;2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;一、※課前準備(預(yù)習(xí)教材80頁~83頁,找出疑惑之處)二、※新課導(dǎo)學(xué):1,回答以下問題(1)某
2024-11-18 16:44
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)平面向量基本定理課后訓(xùn)練北師大版必修4"1.已知向量a=e1-2e2,b=2e1+e2.其中e1,e2不共線,則a+b與c=6e1-2e2的關(guān)系是().A.不共線B.共線C.相等D.無法確定2.設(shè)
2024-12-03 03:14
【總結(jié)】§數(shù)乘向量(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、實數(shù)λ與向量a的乘積是一個向量,記作;|a?|=。2、a?的方向當(dāng)λ0時,與a;當(dāng)λ<
【總結(jié)】§向量的概念(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可
【總結(jié)】撰稿教師:李麗麗自學(xué)目標,并理解其幾何意義。2.理解和應(yīng)用向量數(shù)乘的運算律。學(xué)習(xí)過程一、※課前準備(預(yù)習(xí)教材86頁~87頁,找出疑惑之處)二、※新課導(dǎo)學(xué)1.?dāng)?shù)乘定義:______________________是一個向量,記作a?,它的長度與方向規(guī)定如下:(1)||a?=____
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-17 19:47