【總結(jié)】2.3.1向量數(shù)量積的物理背景與定義一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的定義、投影、數(shù)量積的性質(zhì)二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:數(shù)乘運(yùn)算的定義及運(yùn)算律:二.新課學(xué)習(xí)::如圖:一個(gè)物體在力F的作用下產(chǎn)生位移s,那么力F所做的功應(yīng)當(dāng)怎樣計(jì)算?W=|F|?|s|cos?其中力F和位移s是向量,?是F與s
2024-11-18 16:44
【總結(jié)】教學(xué)目標(biāo):能記住二倍角公式,會(huì)運(yùn)用二倍角公式進(jìn)行求值、化簡和證明,同時(shí)懂得這一公式在運(yùn)用當(dāng)中所起到的用途。培養(yǎng)觀察分析問題的能力,尋找數(shù)學(xué)規(guī)律的能力,同時(shí)注意滲透由一般到特殊的化歸的數(shù)學(xué)思想及問題轉(zhuǎn)化的數(shù)學(xué)思想。重點(diǎn)難點(diǎn):記住二倍角公式,運(yùn)用二倍角公式進(jìn)行求值、化簡和證明;在運(yùn)用當(dāng)中如何正確恰當(dāng)運(yùn)用二倍角公式一、引入新課1、si
2024-11-18 16:43
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(2)新授課學(xué)習(xí)目標(biāo)1、借助正弦函數(shù)的圖像,說出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;
2024-11-27 23:47
【總結(jié)】§弧度制與角度制(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、長度等于半徑長的圓弧所對的圓心角叫做,這種以弧度為單位來度量角的制度叫做。2、在半徑為r的圓中,弧長為l的弧所對圓心角為α,則。3、完成下列表格度數(shù)
2024-11-27 23:51
【總結(jié)】3.2.1倍角公式一。學(xué)習(xí)要點(diǎn):二倍角公式及其簡單應(yīng)用。二。學(xué)習(xí)過程:復(fù)習(xí):和角公式.新課學(xué)習(xí):sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
【總結(jié)】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會(huì)用它們進(jìn)行向量計(jì)算【學(xué)習(xí)重難點(diǎn)】重點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律難點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
2024-11-20 01:05
【總結(jié)】弧度制(1)學(xué)習(xí)要點(diǎn):弧度制以及角度制與之換算關(guān)系。學(xué)習(xí)過程:(一)復(fù)習(xí):度量角的大小第一種單位制—角度制的定義。(二)新課學(xué)習(xí):1.1弧度角的定義:長度等于的弧所對的圓心角稱為的角。如圖:?AOB=1rad
2024-11-18 16:46
【總結(jié)】第二章一、選擇題1.已知點(diǎn)A(7,1)、B(1,4),直線y=12ax與線段AB交于點(diǎn)C,且AC→=2CB→,則a等于()A.2B.1C.45D.53[答案]A[解析]設(shè)C(x,y),則(x-7,y-1)=(2-2x,8-2y),∴????
2024-11-27 23:40
【總結(jié)】第二章一、選擇題1.把平面上一切單位向量平移到共同始點(diǎn),那么這些向量的終點(diǎn)構(gòu)成的圖形是()A.一條線段B.一段圓弧C.兩個(gè)孤立的點(diǎn)D.一個(gè)圓[答案]D[解析]圖形是一個(gè)以始點(diǎn)為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點(diǎn)后,這些向量的終點(diǎn)將落在(
【總結(jié)】第二章一、選擇題1.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a+(-b);⑥a+(-a)=()A.3B.4C.5D.6[答案]C[解析]①、②、④、⑤、⑥正確,③不正確,故
2024-11-27 23:46
【總結(jié)】角的概念的推廣3月6日編者:高小燕審稿人:全組人員星期五授課類型:新授學(xué)習(xí)目標(biāo)1、通過實(shí)例體會(huì)任意角的概念(包括正角、負(fù)角、零角)并會(huì)完成角的加減運(yùn)算2、會(huì)表示所有與α角終邊相同的角(包括α角)3、體會(huì)運(yùn)動(dòng)變化觀點(diǎn),深刻理解
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo),會(huì)進(jìn)行平面向量數(shù)量積的坐標(biāo)運(yùn)算。。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材112頁~114頁,找出疑惑之處)二、新課導(dǎo)學(xué)1.向量內(nèi)積的坐標(biāo)運(yùn)算已知兩個(gè)非零向量????1122a=x,y,b=x,y,ab=?(坐標(biāo)形式)。:
【總結(jié)】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式及其簡單運(yùn)用二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的性質(zhì)及運(yùn)算律.二.新課學(xué)習(xí)::兩個(gè)向量的數(shù)量積等于它們對應(yīng)坐標(biāo)的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
【總結(jié)】余弦函數(shù)圖像和性質(zhì)(1)學(xué)案(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學(xué)習(xí)目標(biāo),牢記余弦函數(shù)的五個(gè)關(guān)鍵點(diǎn),用五點(diǎn)法熟練作余弦函數(shù)的簡圖。,并用集合符號來表示;、余弦函數(shù)的圖象之間的關(guān)系,能說出函數(shù)co
【總結(jié)】高一數(shù)學(xué)正切函數(shù)的圖像與性質(zhì)林銀玲目標(biāo)1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質(zhì);2、能利用正切函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;自學(xué)指