【總結(jié)】2.1.1向量的概念一.學(xué)習(xí)要點(diǎn):向量的有關(guān)概念二.學(xué)習(xí)過程:一、復(fù)習(xí):在現(xiàn)實(shí)生活中,我們會(huì)遇到很多量,其中一些量在取定單位后用一個(gè)實(shí)數(shù)就可以表示出來,如長(zhǎng)度、質(zhì)量等.還有一些量,如我們?cè)谖锢碇兴鶎W(xué)習(xí)的位移,是一個(gè)既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學(xué)習(xí)::
2024-11-27 23:47
【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十三分。,2.3.4平面向量共線的坐標(biāo)表示,第二頁,編輯于星期六:點(diǎn)三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十三分。,第四頁,編輯于星期六:點(diǎn)...
2025-10-13 18:49
【總結(jié)】2.1.3向量的減法一.學(xué)習(xí)要點(diǎn):向量的減法二.學(xué)習(xí)過程:一、復(fù)習(xí):向量加法的法則:二、新課學(xué)習(xí):1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
2024-11-27 23:46
【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點(diǎn):數(shù)乘向量、向量共線和三點(diǎn)共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實(shí)數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長(zhǎng)度與方向有什么變化?定義:實(shí)數(shù)λ與向量a的積是
【總結(jié)】第二章一、選擇題1.設(shè)e1、e2是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1D.e2和e1+e2[答案]B[解析]∵4e2-6e1=-2(3e1-2
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點(diǎn)共線問題例1.O是坐標(biāo)原點(diǎn),OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時(shí),A、B、C三點(diǎn)共線?[分析]由A、B、C三點(diǎn)共線可知,AB→、AC→、BC→中任兩個(gè)共線,由坐標(biāo)表示的共線條件解方
2024-11-19 20:38
【總結(jié)】綜合檢測(cè)(二)第二章平面向量(時(shí)間:90分鐘,滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.下列說法中,正確的是()A.若向量|a|=|b|,則a=b或a=-bB.若a∥b,b∥c,則a∥cC.長(zhǎng)度不相
2024-11-28 01:55
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線的坐標(biāo)表示課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量共線的判定1、2、310由向量共線求參數(shù)56、7、8向量共線的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【總結(jié)】章末質(zhì)量評(píng)估(二)(時(shí)間:90分鐘滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.給出下列等式:(1)a·0=0;(2)0·a=0;(3)若a,b同向共線,則a·b=|a|
2024-11-27 23:35
【總結(jié)】§2.平面向量共線的坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題?!局R(shí)梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實(shí)數(shù)使//ab?;反之,存在唯一實(shí)數(shù)?。使//
2024-11-30 13:46
【總結(jié)】§向量在幾何中的應(yīng)用(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.兩個(gè)向量的數(shù)量積:2.平面兩向量數(shù)量積的坐標(biāo)表示:3.向量平
2024-11-19 06:26
【總結(jié)】向量共線的條件和軸上向量的坐標(biāo)運(yùn)算一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘運(yùn)算,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)
2024-11-18 12:10
【總結(jié)】階段性測(cè)試題二(第二章綜合測(cè)試題)本試卷分第Ⅰ卷選擇題和第Ⅱ卷非選擇題兩部分,滿分150分,時(shí)間120分鐘。第Ⅰ卷(選擇題共60分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,其中有且僅有一個(gè)是正確的.)1.(2021·山東煙臺(tái)高一期末測(cè)試)已知向量a=(
2024-11-28 01:11
【總結(jié)】課題:平面向量復(fù)習(xí)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對(duì)知識(shí)進(jìn)行一次梳理,突出知識(shí)間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識(shí)解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實(shí)數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對(duì)空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e