【總結(jié)】第二章一、選擇題1.若|a|=3,|b|=3,且a與b的夾角為π6,則|a+b|=()A.3B.3C.21D.21[答案]D[解析]∵|a|=3,|b|=3,a與b的夾角為π6,∴|a+b|2=a2+2a·b+b2=9+2
2024-11-28 01:12
【總結(jié)】2.3.2向量數(shù)量積的運(yùn)算律一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的運(yùn)算律及其簡單運(yùn)用二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的定義及其幾何意義、性質(zhì):二.新課學(xué)習(xí)::(1)(2)(3)
2024-11-18 16:44
【總結(jié)】第二章一、選擇題1.已知點(diǎn)A(7,1)、B(1,4),直線y=12ax與線段AB交于點(diǎn)C,且AC→=2CB→,則a等于()A.2B.1C.45D.53[答案]A[解析]設(shè)C(x,y),則(x-7,y-1)=(2-2x,8-2y),∴????
2024-11-27 23:40
【總結(jié)】2.1.1向量的概念一.學(xué)習(xí)要點(diǎn):向量的有關(guān)概念二.學(xué)習(xí)過程:一、復(fù)習(xí):在現(xiàn)實(shí)生活中,我們會(huì)遇到很多量,其中一些量在取定單位后用一個(gè)實(shí)數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學(xué)習(xí)的位移,是一個(gè)既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學(xué)習(xí)::
2024-11-27 23:47
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.已知a=(1,-1),b=(2,3),則a·b=().A.5B.4C.-2D.-1解析a·b=1×2+(-1)×3=-1.答案D2.已知向量a=(-2,1),b=
2024-11-27 23:43
【總結(jié)】2.1.3向量的減法一.學(xué)習(xí)要點(diǎn):向量的減法二.學(xué)習(xí)過程:一、復(fù)習(xí):向量加法的法則:二、新課學(xué)習(xí):1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
2024-11-27 23:46
【總結(jié)】第二章一、選擇題1.把平面上一切單位向量平移到共同始點(diǎn),那么這些向量的終點(diǎn)構(gòu)成的圖形是()A.一條線段B.一段圓弧C.兩個(gè)孤立的點(diǎn)D.一個(gè)圓[答案]D[解析]圖形是一個(gè)以始點(diǎn)為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點(diǎn)后,這些向量的終點(diǎn)將落在(
【總結(jié)】第二章一、選擇題1.向量(AB→+MB→)+(BO→+BC→)+OM→等于()A.BC→B.AB→C.AC→D.AM→[答案]C[解析]原式=AB→+BC→+MB→+BO→+OM→=AC→+0=AC→.2.若a、b為非零向量,則下列
【總結(jié)】第二章一、選擇題1.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a+(-b);⑥a+(-a)=()A.3B.4C.5D.6[答案]C[解析]①、②、④、⑤、⑥正確,③不正確,故
【總結(jié)】2.1.5向量共線條件與軸上向量坐標(biāo)運(yùn)算一、學(xué)習(xí)要點(diǎn):單位向量、軸上向量坐標(biāo)運(yùn)算、共線定理應(yīng)用二、學(xué)習(xí)過程:(一)復(fù)習(xí)引入:1.向量的表示方法2.向量的加法,減法及運(yùn)算律3.實(shí)數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個(gè)非零向量a,與a同方向且長度等于的單位向量叫
【總結(jié)】課題坐標(biāo)的標(biāo)示及運(yùn)算教學(xué)目標(biāo)知識與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過程與方法掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.情感態(tài)度價(jià)值觀正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.重點(diǎn)溝通向量“數(shù)”與“形”的特征,使向
2024-11-19 17:32
【總結(jié)】一、選擇題1.(2021·重慶高一檢測)已知α=67π,則α的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限【解析】α=67π∈(π2,π),∴α的終邊在第二象限.【答案】B2.時(shí)鐘的分針在1點(diǎn)到3點(diǎn)20分這段時(shí)間里轉(zhuǎn)過的弧度數(shù)為()
2024-11-27 23:51
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo),會(huì)進(jìn)行平面向量數(shù)量積的坐標(biāo)運(yùn)算。。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材112頁~114頁,找出疑惑之處)二、新課導(dǎo)學(xué)1.向量內(nèi)積的坐標(biāo)運(yùn)算已知兩個(gè)非零向量????1122a=x,y,b=x,y,ab=?(坐標(biāo)形式)。:
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo)1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學(xué)會(huì)求向量的模長;3.注意向量的特點(diǎn):可以平行移動(dòng)學(xué)習(xí)重、難點(diǎn):1.向量、相等向量、共線向量的概念;2.向量的幾何表示學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材77頁~79頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)問題探
【總結(jié)】§向量的加法(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)a,b在平面上任取一點(diǎn)A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B