【摘要】一、選擇題1.設(shè)k∈R,下列向量中,與向量a=(1,-1)一定不平行的向量是()A.b=(k,k)B.c=(-k,-k)C.d=(k2+1,k2+1)D.e=(k2-1,k2-1)【解析】由向量共線的判定條件,當(dāng)k=0時(shí),向量b,c與a平行;當(dāng)k=±1
2025-01-30 23:43
【摘要】一、選擇題1.(2021·衡水高一檢測(cè))設(shè)e1,e2是平面內(nèi)所有向量的一組基底,則下列四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2【解析】B中,∵6e1-8e2=2(3e1-4e
2025-01-30 23:46
【摘要】設(shè)是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()ABCD21ee??,2121eeee??????和12216423eeee????
2024-09-03 04:31
【摘要】向量的坐標(biāo)表示與運(yùn)算復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有
2025-01-12 03:52
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2025-01-15 19:04
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=
2025-01-13 00:49
2025-01-14 21:10
【摘要】第二章一、選擇題1.已知數(shù)軸上A點(diǎn)坐標(biāo)為-5,AB=-7,則B點(diǎn)坐標(biāo)是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設(shè)a與b是兩個(gè)不共線的向量,且向量a+λb與-(b
【摘要】一、選擇題1.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關(guān)系是()A.B=A∩CB.B∪C=CC.ACD.A=B=C【解析】銳角大于0°小于90°,故CB,選項(xiàng)B正確.【答案】B2.把-1
2025-01-31 01:55
【摘要】自學(xué)目標(biāo)1、掌握平行向量基本定理;2、掌握軸上向量的座標(biāo)及其運(yùn)算。學(xué)習(xí)過程[來源:.Com]一、課前準(zhǔn)備(預(yù)習(xí)教材77頁~79頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標(biāo)及其運(yùn)算:①已知軸l,取單位向
【摘要】§向量的減法(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、如果把兩個(gè)向量的始點(diǎn)放在一起,則這兩個(gè)向量的差是以為起點(diǎn),為終點(diǎn)的向量。2、一個(gè)向量BA等于它的終點(diǎn)相對(duì)于點(diǎn)O的位置向量___減去它的始點(diǎn)相對(duì)于點(diǎn)O的位置向量___,或簡(jiǎn)記為
2025-01-21 16:44
【摘要】一、選擇題1.2sin2α1+cos2α·cos2αcos2α=()A.tan2αB.tanαC.1【解析】原式=2sin2α2cos2α·cos2αcos2α=tan2α.【答案】A2.函數(shù)f(x)=sinxcosx的最小值是()
2025-01-30 23:35
【摘要】一、選擇題1.|a|=1,|b|=2,c=a+b且c⊥a,則a與b的夾角為()A.30°B.60°C.120°D.150°【解析】c⊥a,設(shè)a與b的夾角為θ,則(a+b)·a=0,所以a2+a·b=0,所以a2+
【摘要】教學(xué)設(shè)計(jì)一、課前延伸預(yù)習(xí)檢測(cè):判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點(diǎn)必在一條直線上。()(3)若干個(gè)向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【摘要】一、選擇題1.下列各式與tanα相等的是()A.1-cos2α1+cos2αB.sinα1+cosαC.sinα1-cos2α-cos2αsin2α【解析】1-cos2αsin2α=2sin2α2sinαcosα=sinαcosα=tanα.【答