【摘要】一、選擇題1.用力F推動一物體水平運動sm,設(shè)F與水平面的夾角為θ,則力F對物體所做的功為()A.|F|·sB.F·cosθ·sC.F·sinθ·sD.|F|·cosθ·s【解析】W=F·s=|F|·|s|
2025-01-31 01:12
【摘要】一、選擇題1.點C在線段AB上,且AC→=35AB→,則AC→等于()BC→BC→C.-23BC→D.-32BC→【解析】∵AC→=35AB→,∴BC→=-25AB→,∴AC→=-32BC→.【答案】D2.下面四個說法①對于實數(shù)m
【摘要】一、選擇題1.2sin2α1+cos2α·cos2αcos2α=()A.tan2αB.tanαC.1【解析】原式=2sin2α2cos2α·cos2αcos2α=tan2α.【答案】A2.函數(shù)f(x)=sinxcosx的最小值是()
2025-01-30 23:35
【摘要】3.2.2半角公式一。學(xué)習(xí)要點:半角公式及其簡單應(yīng)用。二。學(xué)習(xí)過程:復(fù)習(xí):升冪公式:降冪公式:新課學(xué)習(xí):1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2025-01-21 16:43
【摘要】一、選擇題1.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關(guān)系是()A.B=A∩CB.B∪C=CC.ACD.A=B=C【解析】銳角大于0°小于90°,故CB,選項B正確.【答案】B2.把-1
2025-01-31 01:55
【摘要】課題半角的正弦、余弦和正切(1)授課教師李桂艷教學(xué)目標(biāo)1、知識目標(biāo):掌握半角的正弦、余弦、正切公式推導(dǎo)方法及結(jié)構(gòu)特點;能正確運用這些公式進(jìn)行簡單三角函數(shù)式的化簡、求值和證明恒等式。2、能力目標(biāo):通過公式的推導(dǎo)及應(yīng)用,培養(yǎng)他們的化歸思想(換元),分類討論思想,方程思想和邏輯推理能力。3、德育目標(biāo):
2025-01-22 19:27
【摘要】一、選擇題1.(2021·衡水高一檢測)設(shè)e1,e2是平面內(nèi)所有向量的一組基底,則下列四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2【解析】B中,∵6e1-8e2=2(3e1-4e
2025-01-30 23:46
【摘要】一、選擇題1.已知函數(shù)y=cosx(x∈R),下面結(jié)論錯誤的個數(shù)是()①函數(shù)f(x)的最小正周期為2π;②函數(shù)f(x)在區(qū)間[0,π2]上是增函數(shù);③函數(shù)f(x)的圖象關(guān)于直線x=0對稱;④函數(shù)f(x)是奇函數(shù).A.0B.1C.2D.3【解析】余弦函數(shù)的最小正周期是
2025-01-30 23:47
【摘要】一、選擇題1.函數(shù)y=sin(-x),x∈[0,2π]的簡圖是()【解析】∵y=sin(-x)=-sinx,由五點法知應(yīng)選B.【答案】B2.函數(shù)y=2sinx-3的定義域是()A.[π6,5π6]B.[π6+2kπ,5π6+2kπ](k∈Z)C.[π3,2π3]
【摘要】一、選擇題1.(2021·重慶高一檢測)已知α=67π,則α的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限【解析】α=67π∈(π2,π),∴α的終邊在第二象限.【答案】B2.時鐘的分針在1點到3點20分這段時間里轉(zhuǎn)過的弧度數(shù)為()
2025-01-30 23:51
【摘要】一、選擇題1.已知簡諧運動f(x)=2sin(π3x+φ)(|φ|π2)的圖象經(jīng)過點(0,1),則該簡諧運動的最小正周期T和初相φ分別為()A.T=6,φ=π6B.T=6,φ=π3C.T=6π,φ=π6D.T=6π,φ=π3【解析】T=2πω=2ππ3=6
【摘要】一、選擇題1.a(chǎn)=(-4,3),b=(5,6),則3|a|2-4a·b=()A.23B.57C.63D.83【解析】|a|2=a2=a·a=(-4)2+32=25,a·b=(-4,3)·(5,6)=-20+18=-2.∴3|a|
2025-01-30 23:40
【摘要】一、選擇題1.sin600°+tan(-300°)的值是()A.-32B.32C.-12+3+3【解析】原式=sin(360°+240°)+tan(-360°+60°)=sin240°+tan60°
2025-01-30 23:50
【摘要】一、選擇題1.已知sinα=-13,-π2<α<0,則α等于()A.π-arcsin(-13)B.π+arcsin(-13)C.a(chǎn)rcsin(-13)D.-arcsin(-13)【解析】-π2<α<0,sinα=-13,所以α=arcsin(-13).【答案】C
【摘要】一、選擇題1.cos(-41π3)的值為()B.-12C.32D.36【解析】cos(-41π3)=cos(-14π+π3)=cosπ3=12.【答案】A2.sin(-1560°)的值是()A.-32B.-12D.32