【總結(jié)】第三章一、選擇題1.函數(shù)y=cos2x2的最小正周期是()A.π3B.π4C.πD.2π[答案]D[解析]y=cos2x2=1+cosx2,∴函數(shù)y=cos2x2的最小正周期T=2π.2.下列各式中,值等于12的是()A.cos45°co
2025-11-19 01:11
【總結(jié)】§2從位移的合成到向量的加法2.1向量的加法,)1.問題導航(1)任意兩個向量都可以應(yīng)用向量加法的三角形法則嗎?(2)向量加法的三角形法則與平行四邊形法則的使用條件有何不同?2.例題導讀教材P77例1,例2,P78例,熟悉向量加法運算,學會利用向量加法解決實際生
2025-11-19 01:16
【總結(jié)】§向量在幾何中的應(yīng)用(課前預(yù)習案)班級:___姓名:________編寫:一、新知導學1.兩個向量的數(shù)量積:2.平面兩向量數(shù)量積的坐標表示:3.向量平
2025-11-10 06:26
【總結(jié)】2.1.5向量共線條件與軸上向量坐標運算一、學習要點:單位向量、軸上向量坐標運算、共線定理應(yīng)用二、學習過程:(一)復習引入:1.向量的表示方法2.向量的加法,減法及運算律3.實數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
2025-11-09 16:44
【總結(jié)】綜合檢測(二)第二章平面向量(時間:90分鐘,滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列說法中,正確的是()A.若向量|a|=|b|,則a=b或a=-bB.若a∥b,b∥c,則a∥cC.長度不相
2025-11-19 01:55
【總結(jié)】撰稿教師:李麗麗學習目標1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問題學習過程一、課前準備(預(yù)習教材96頁~98頁,找出疑惑之處)二、新課導學1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個不共線的向量來表示。如圖,設(shè)2
【總結(jié)】一、選擇題1.點C在線段AB上,且AC→=35AB→,則AC→等于()BC→BC→C.-23BC→D.-32BC→【解析】∵AC→=35AB→,∴BC→=-25AB→,∴AC→=-32BC→.【答案】D2.下面四個說法①對于實數(shù)m
2025-11-19 01:12
【總結(jié)】章末質(zhì)量評估(二)(時間:90分鐘滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.給出下列等式:(1)a·0=0;(2)0·a=0;(3)若a,b同向共線,則a·b=|a|
2025-11-18 23:35
【總結(jié)】北京市延慶縣第三中學高中數(shù)學函數(shù)的表示方法教案新人教B版必修1教學難點:根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù),分段函數(shù)的表示及其圖象.教學方法:教師指導與學生合作、交流相結(jié)合的教學方法.教學環(huán)節(jié)任務(wù)與目的時間教師活動學生活動環(huán)節(jié)1點擊雙基
2025-11-26 01:51
【總結(jié)】第一章一、選擇題1.(2021·全國大綱文,2)已知角α的終邊經(jīng)過點(-4,3),則cosα=()A.45B.35C.-35D.-45[答案]D[解析]考查了三角函數(shù)的定義.由條件知:x=-4,y=3,則r=5,∴cosα=xr=-45.2.(20
2025-11-18 23:51
【總結(jié)】誘導公式一.學習要點:誘導公式及其簡單應(yīng)用二.學習過程:一、復習:誘導公式一:二、講解新課:公式二:公式三:公式四:公
2025-11-09 16:46
【總結(jié)】2.3.1向量數(shù)量積的物理背景與定義一、學習要點:向量數(shù)量積的定義、投影、數(shù)量積的性質(zhì)二、學習過程:一.復習回顧:數(shù)乘運算的定義及運算律:二.新課學習::如圖:一個物體在力F的作用下產(chǎn)生位移s,那么力F所做的功應(yīng)當怎樣計算?W=|F|?|s|cos?其中力F和位移s是向量,?是F與s
【總結(jié)】3.2.2半角公式一。學習要點:半角公式及其簡單應(yīng)用。二。學習過程:復習:升冪公式:降冪公式:新課學習:1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2025-11-09 16:43
【總結(jié)】《向量數(shù)量積的運算律》教學設(shè)計一、情景引入知識回顧:平面向量數(shù)量積的定義及幾何意義(學生回答)問題導思:向量的數(shù)量積是否具有類似于數(shù)量乘法那樣的運算律?⑴交換律:ba?=;⑵結(jié)合律:??ba??==;⑶分配律:??cba??=。
【總結(jié)】雙基達標?限時20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
2025-11-18 23:46