【總結】2.1.5向量共線條件與軸上向量坐標運算一、學習要點:單位向量、軸上向量坐標運算、共線定理應用二、學習過程:(一)復習引入:1.向量的表示方法2.向量的加法,減法及運算律3.實數與向量的乘法(向量數乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
2025-11-09 16:44
【總結】綜合檢測(二)第二章平面向量(時間:90分鐘,滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列說法中,正確的是()A.若向量|a|=|b|,則a=b或a=-bB.若a∥b,b∥c,則a∥cC.長度不相
2025-11-19 01:55
【總結】撰稿教師:李麗麗學習目標1.了解平面向量基本定理,掌握平面向量基本定理及其應用2.利用平面向量基本定理解決有關問題學習過程一、課前準備(預習教材96頁~98頁,找出疑惑之處)二、新課導學1、平行向量基本定理2、平面內任一向量是否可以用兩個不共線的向量來表示。如圖,設2
【總結】一、選擇題1.點C在線段AB上,且AC→=35AB→,則AC→等于()BC→BC→C.-23BC→D.-32BC→【解析】∵AC→=35AB→,∴BC→=-25AB→,∴AC→=-32BC→.【答案】D2.下面四個說法①對于實數m
2025-11-19 01:12
【總結】章末質量評估(二)(時間:90分鐘滿分:120分)一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.給出下列等式:(1)a·0=0;(2)0·a=0;(3)若a,b同向共線,則a·b=|a|
2025-11-18 23:35
【總結】北京市延慶縣第三中學高中數學函數的表示方法教案新人教B版必修1教學難點:根據不同的需要選擇恰當的方法表示函數,分段函數的表示及其圖象.教學方法:教師指導與學生合作、交流相結合的教學方法.教學環(huán)節(jié)任務與目的時間教師活動學生活動環(huán)節(jié)1點擊雙基
2025-11-26 01:51
【總結】第一章一、選擇題1.(2021·全國大綱文,2)已知角α的終邊經過點(-4,3),則cosα=()A.45B.35C.-35D.-45[答案]D[解析]考查了三角函數的定義.由條件知:x=-4,y=3,則r=5,∴cosα=xr=-45.2.(20
2025-11-18 23:51
【總結】誘導公式一.學習要點:誘導公式及其簡單應用二.學習過程:一、復習:誘導公式一:二、講解新課:公式二:公式三:公式四:公
2025-11-09 16:46
【總結】2.3.1向量數量積的物理背景與定義一、學習要點:向量數量積的定義、投影、數量積的性質二、學習過程:一.復習回顧:數乘運算的定義及運算律:二.新課學習::如圖:一個物體在力F的作用下產生位移s,那么力F所做的功應當怎樣計算?W=|F|?|s|cos?其中力F和位移s是向量,?是F與s
【總結】3.2.2半角公式一。學習要點:半角公式及其簡單應用。二。學習過程:復習:升冪公式:降冪公式:新課學習:1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2025-11-09 16:43
【總結】《向量數量積的運算律》教學設計一、情景引入知識回顧:平面向量數量積的定義及幾何意義(學生回答)問題導思:向量的數量積是否具有類似于數量乘法那樣的運算律?⑴交換律:ba?=;⑵結合律:??ba??==;⑶分配律:??cba??=。
【總結】雙基達標?限時20分鐘?1.如果e1、e2是平面α內所有向量的一組基底,那么下列命題正確的是().A.若實數λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
2025-11-18 23:46
【總結】系統(tǒng)抽樣一、基礎過關1.用系統(tǒng)抽樣法要從160名學生中抽取容量為20的樣本,將160名學生從1~160編號.按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組應抽出的號碼為125,則第一組中按此抽簽方法確定的號碼是
2025-11-29 05:55
【總結】數列的遞推公式(選學)1.數列{an}滿足an+1=an+n,且a1=1,則a5的值為().A.9B.10C.11D.12解析a5=a4+4=a3+3+4=a2+2+3+4=a1+1+2+3+4=11.答案C2.已知數列{an}的首項為a1=1,且滿
2025-11-18 23:54
【總結】第三章一、選擇題1.若tan(π4-α)=3,則cotα等于()A.-2B.-12C.12D.2[答案]A[解析]∵tan(π4-α)=1-tanα1+tanα=3,∴tanα=-12,∴cotα=-2.2.設tanα、tanβ是方程x2-3x+2
2025-11-19 02:11