【總結(jié)】§2兩角和與差的三角函數(shù)2.1兩角差的余弦函數(shù)2.2兩角和與差的正弦、余弦函數(shù),)1.問(wèn)題導(dǎo)航(1)根據(jù)α+β=α-(-β),如何由Cα-β推出Cα+β?(2)對(duì)任意角α,β,cos(α-β)=cosα-cosβ成立嗎?(3)如
2024-11-28 00:14
【總結(jié)】§兩角和與差的正弦、正切和余切【學(xué)習(xí)目標(biāo)、細(xì)解考綱】、余弦、正切公式,會(huì)初步運(yùn)用公式求一些角的三角函數(shù)值;角和與差的三角函數(shù)公式的探究過(guò)程,提高發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力;【知識(shí)梳理、雙基再現(xiàn)】1、在一般情況下sin(α+β)≠sinα+sinβ,cos(α+β)≠cosα+cosβ
2024-11-30 13:51
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式1.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos62°sin28°=sin(62°+
2024-12-05 06:46
【總結(jié)】?jī)山呛团c差的正弦沈陽(yáng)二中數(shù)學(xué)組?掌握兩角和與差的正弦公式.?熟練應(yīng)用公式求值,化簡(jiǎn)和證明.?熟練掌握公式正,反兩方面的應(yīng)用.學(xué)習(xí)目標(biāo)?如何用α或β的正弦,余弦來(lái)表示α-β或α+β的正弦??兩角和與差的正弦公式是怎樣證明的??兩角和與差的正弦公式有什么特點(diǎn)?
2024-11-18 12:09
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難兩角和與差正切公式的運(yùn)用1、3、67、9給值求值(角)問(wèn)題2、4、510、11綜合問(wèn)題8121.與1-tan21°1+tan21°相等的是()A.tan66
【總結(jié)】第三章一、選擇題1.若cosθ0,sin2θ0,sin2θ=2sinθcosθ0,∴sinθ0,∴角θ是第四象限角.
2024-11-28 01:12
【總結(jié)】(一)沈陽(yáng)二中數(shù)學(xué)組掌握用向量證明問(wèn)題的方法.掌握兩角和與差的余弦公式.熟練應(yīng)用公式求值和證明及公式正,反兩方面的應(yīng)用.本節(jié)重點(diǎn)是應(yīng)用公式求值和證明.本節(jié)難點(diǎn)是公式的推導(dǎo).學(xué)習(xí)目標(biāo)自學(xué)提綱1、如何用α或β的正弦,余弦來(lái)表示α-β或α+β的余弦?2、兩角和與差的余弦公式是怎樣
【總結(jié)】,[學(xué)生用書單獨(dú)成冊(cè)])[]1.若tan????π4-α=3,則tanα的值為()A.-2B.-12D.2解析:選α=tan??????π4-????π4-α=1-tan????π4-α1+tan????π4-α=1
【總結(jié)】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)兩角和與差的正切函數(shù)課后訓(xùn)練北師大版必修4"1.若tanα=3,則13tan4?????????的值為().A.-2B.2C.12D.12?2.已知tan(α+β)=25,1
2024-12-03 03:13
【總結(jié)】《兩角和與差的正切》課教學(xué)設(shè)計(jì) 一、設(shè)計(jì)說(shuō)明 從兩角和與差的正余弦公式導(dǎo)入兩角和與差的正切公式,培養(yǎng)學(xué)生的觀察、分析、類比、聯(lián)想的能力,從公式的內(nèi)在聯(lián)系及問(wèn)題的解決過(guò)程中發(fā)展學(xué)生的正向、逆向思...
2025-04-03 03:16
【總結(jié)】、余弦、正切公式2020、12、24一、復(fù)習(xí):?)cos(????C)(???簡(jiǎn)記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號(hào)反。二、公式的推導(dǎo)??)cos(??)](cos[???????
2024-11-18 12:17
【總結(jié)】第二章一、選擇題1.向量(AB→+MB→)+(BO→+BC→)+OM→等于()A.BC→B.AB→C.AC→D.AM→[答案]C[解析]原式=AB→+BC→+MB→+BO→+OM→=AC→+0=AC→.2.若a、b為非零向量,則下列
【總結(jié)】第二章一、選擇題1.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a+(-b);⑥a+(-a)=()A.3B.4C.5D.6[答案]C[解析]①、②、④、⑤、⑥正確,③不正確,故
2024-11-27 23:46
【總結(jié)】第二章一、選擇題1.已知點(diǎn)A(7,1)、B(1,4),直線y=12ax與線段AB交于點(diǎn)C,且AC→=2CB→,則a等于()A.2B.1C.45D.53[答案]A[解析]設(shè)C(x,y),則(x-7,y-1)=(2-2x,8-2y),∴????
2024-11-27 23:40
【總結(jié)】第二章一、選擇題1.把平面上一切單位向量平移到共同始點(diǎn),那么這些向量的終點(diǎn)構(gòu)成的圖形是()A.一條線段B.一段圓弧C.兩個(gè)孤立的點(diǎn)D.一個(gè)圓[答案]D[解析]圖形是一個(gè)以始點(diǎn)為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點(diǎn)后,這些向量的終點(diǎn)將落在(
2024-11-27 23:47