【總結(jié)】?jī)山呛团c差的正弦沈陽(yáng)二中數(shù)學(xué)組?掌握兩角和與差的正弦公式.?熟練應(yīng)用公式求值,化簡(jiǎn)和證明.?熟練掌握公式正,反兩方面的應(yīng)用.學(xué)習(xí)目標(biāo)?如何用α或β的正弦,余弦來(lái)表示α-β或α+β的正弦??兩角和與差的正弦公式是怎樣證明的??兩角和與差的正弦公式有什么特點(diǎn)?
2025-11-09 12:09
【總結(jié)】二倍角的正弦、余弦、正切公式問(wèn)題提出t57301p2???????1.兩角和與差的正弦、余弦和正切公式分別是什么?2.是特殊角,與是倍半關(guān)系,利用上述公式可以求的三角函數(shù)值.如果能推導(dǎo)一組反映倍半關(guān)系的三角函數(shù)公式,將是很有實(shí)際意義的.4?4?8?8?
2025-11-09 12:17
【總結(jié)】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個(gè)自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問(wèn)題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個(gè)公式對(duì)任意α、β都成立.答案:sin(α
2024-12-09 03:40
【總結(jié)】?jī)山呛团c差的正弦公式【學(xué)習(xí)目標(biāo)】1、掌握兩角和與差的正弦公式及其推導(dǎo)方法。2、通過(guò)公式的推導(dǎo),了解它們的內(nèi)在聯(lián)系,培養(yǎng)邏輯推理能力。并運(yùn)用進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等變形。3、掌握誘導(dǎo)公式sin=cosα,sin=cosα,si
2025-11-11 01:05
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)二倍角的正弦、余弦、正切公式學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.sin15°sin75°的值為()B.32D.34解析:sin15°sin75°=sin15°cos15°=12sin30°
【總結(jié)】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角差的余弦公式1.熟悉用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過(guò)程,進(jìn)一步體會(huì)向量方法的作用.(難點(diǎn))2.熟記兩角差的余弦公式,并能靈活運(yùn)用.(重點(diǎn))3.兩角差的余弦公式的變形.(難點(diǎn))兩角差的余弦公式公式cos(α-β)=_______
2024-12-04 20:52
【總結(jié)】?jī)山呛团c差的正切沈陽(yáng)二中數(shù)學(xué)組(1)掌握兩角和與差的正切公式;(2)熟練應(yīng)用公式求值和證明;(3)掌握公式正,反兩方面的運(yùn)用及公式的變形運(yùn)用.*本節(jié)重點(diǎn)是公式的結(jié)構(gòu)特點(diǎn)及其推導(dǎo)方法,公式成立的條件,運(yùn)用公式求值.*本節(jié)難點(diǎn)是公式的逆向和變形運(yùn)用.學(xué)習(xí)目標(biāo)?如何用ta
【總結(jié)】?jī)山呛团c差的正弦一、填空題1.sin245°sin125°+sin155°sin35°的值是________.2.若銳角α、β滿(mǎn)足cosα=45,cos(α+β)=35,則sinβ的值是________.3.已知cosαcosβ-sinαsin
2024-12-05 10:15
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式:)(的余弦公式差兩角和)()(???C??????sinsincoscos)cos(???公式的用途:對(duì)于α,β,只要知道其正弦或余弦,就可以求出差角(或和角)的余弦值.復(fù)習(xí)回顧:和(差)角的余弦公式?問(wèn)題探討)()(???S??????
2025-06-05 22:21
【總結(jié)】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式二倍角的正弦、余弦、正切公式1.會(huì)從兩角和的正弦、余弦、正切公式導(dǎo)出二倍角的正弦、余弦、正切公式.(重點(diǎn))2.能熟練運(yùn)用二倍角的公式進(jìn)行簡(jiǎn)單的恒等變換,并能靈活地將公式變形運(yùn)用.(重點(diǎn)、難點(diǎn))二倍角公式做一做(1)若sinα
2024-12-04 20:24
【總結(jié)】?jī)山呛筒畹恼矣嘞艺泄骄毩?xí)題知識(shí)梳理1.兩角和與差的正弦、余弦和正切公式sin(α±β)=sin_αcos_β±cos_αsin_β.cos(α?β)=cos_αcos_β±sin_αsin_β.tan(α±β)=.2.二倍角的正弦、余弦、正切公式sin2α=2sin_αcos_α.cos2α=cos2α-
2025-06-23 16:45
【總結(jié)】課題:兩角和與差的正弦班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】(差)角公式推導(dǎo)出正弦和(差)角公式;(差)角公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn),求值?!菊n前預(yù)習(xí)】1、余弦的和差角公式:??)cos(??;??)co
2025-11-10 21:43
【總結(jié)】第5講 兩角和與差的正弦、余弦和正切[考綱]1.會(huì)用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式.2.能利用兩角差的余弦公式導(dǎo)出兩角差的正弦、正切公式.3.能利用兩角差的余弦公式導(dǎo)出兩角和的正弦、余弦、正切公式,導(dǎo)出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系.知識(shí)梳
2025-08-04 23:52
【總結(jié)】《兩角和與差的余弦》說(shuō)課稿一、教材分析:㈠、地位和作用:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線(xiàn)、余弦線(xiàn)和誘導(dǎo)公式等知識(shí)的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識(shí)基礎(chǔ),對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡(jiǎn)、求值等三角問(wèn)題的解決有重要的支撐作用。本課時(shí)主要講授平面內(nèi)兩點(diǎn)間距離公式、兩角和與差的余弦
2024-12-08 01:49
【總結(jié)】 第2課時(shí) 兩角和與差的正弦、余弦、正切公式(二) 兩角和與差的正切公式 名稱(chēng) 公式 簡(jiǎn)記符號(hào) 使用條件 兩角和 的正切 tan(α+β)= T(α+β) α,β,...
2025-04-03 03:46