【總結(jié)】專題一第5講 導(dǎo)數(shù)及其應(yīng)用一、選擇題(每小題4分,共24分)1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(1)+lnx,則f′(1)=A.-e B.-1C.1 D.e解析 f′(x)=2f′(1)+,令x=1,得f′(1)=2f′(1)+1,∴f′(1)=-.答案 B2.(2012·泉州
2025-08-05 17:15
【總結(jié)】題型四 反比例函數(shù)與一次函數(shù)綜合題針對演練1.如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,2),直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別相交于點B,C,連接AC.(1)求k和m的值;(2)求點B的坐標;(3)求△ABC的面積.
2025-03-26 05:30
【總結(jié)】導(dǎo)數(shù)一、導(dǎo)數(shù)的概念1.導(dǎo)數(shù)的背景(1)切線的斜率;(2)瞬時速度;(3)邊際成本。如一物體的運動方程是,其中的單位是米,的單位是秒,那么物體在時的瞬時速度為_____(答:5米/秒)如果函數(shù)在開區(qū)間(a,b)內(nèi)可導(dǎo),對于開區(qū)間(a,b)內(nèi)的每一個,都對應(yīng)著一個導(dǎo)數(shù),這樣在開區(qū)間(a,b)內(nèi)構(gòu)成
2024-12-18 04:38
【總結(jié)】1數(shù)列求和的常用方法數(shù)列求和是數(shù)列的重要內(nèi)容之一,也是高考數(shù)學的重點考查對象。數(shù)列求和的基本思路是,抓通項,找規(guī)律,套方法。下面介紹數(shù)列求和的幾種常用方法:一、直接(或轉(zhuǎn)化)由等差、等比數(shù)列的求和公式求和利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:dnnnaaanSnn2)1(2)(11
2024-12-17 15:19
【總結(jié)】1天馬行空官方博客:;QQ:1318241189;QQ群:175569632解析幾何綜合題解題思路案例分析天馬行空官方博客:;QQ:1318241189;QQ群:175569632解析幾何綜合題是高考命題的熱點內(nèi)容之一.這類試題往往以解析幾何知識為載體,綜合函數(shù)、不等式、三角、數(shù)列等知識,所涉及到的知識點較多,對解題能
2025-01-07 21:02
【總結(jié)】...抽象函數(shù)專題訓(xùn)練1線性函數(shù)型抽象函數(shù)【例題1】已知函數(shù)對任意實數(shù),均有,且當時,求在區(qū)間上的值域。【例題2】已知函數(shù)對任意實數(shù),均有,且當時,求不等式的解。2指數(shù)函數(shù)型抽象函數(shù)【例題3】已知函數(shù)定義域為R,滿足條件:存在,使得對任何和
2025-08-05 18:07
【總結(jié)】高中數(shù)學《利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性》教學實踐與思考一、對教材的認識導(dǎo)數(shù)的方法是今后全面研究微積分的重要方法和基本工具,在其它學科中同樣具有十分重要的作用:在物理學、經(jīng)濟學等其它學科和生產(chǎn)、生活的各個領(lǐng)域都有廣泛的應(yīng)用。導(dǎo)數(shù)的出現(xiàn)推動了人類事業(yè)向前發(fā)展;因此,在高中數(shù)學課程中設(shè)置導(dǎo)數(shù)的方法有其獨特的價值和作用。本章新課程中設(shè)置的內(nèi)容與傳統(tǒng)內(nèi)容有很
2025-07-28 16:20
【總結(jié)】 合理“巧設(shè)”,輕松應(yīng)對函數(shù)與導(dǎo)數(shù)壓軸題 函數(shù)與導(dǎo)數(shù)的交匯問題經(jīng)常出現(xiàn)在壓軸題(包括客觀題和主觀題中的壓軸題)位置.解決這類問題時,往往會遇到某些難以確定的根、交點、,往往無功而返;這時,放棄...
2025-04-03 04:21
【總結(jié)】導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::xxxxxx??????00,)()(00xfxxfy?????)()()(lim)()()(limlim)(000000導(dǎo)函數(shù)一般地:??????????????????????xxfxxfxf
2025-05-15 21:38
【總結(jié)】奎屯王新敞新疆知識回顧1、一般地,設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)可導(dǎo),則函數(shù)在該區(qū)間如果f′(x)0,如果f′(x)0,則f(x)為增函數(shù);則f(x)為減函數(shù).2、用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性時的步驟是:f(x)的定義域..f
2025-08-16 00:16
【總結(jié)】專題8:導(dǎo)數(shù)(文)經(jīng)典例題剖析考點一:求導(dǎo)公式。例1.是的導(dǎo)函數(shù),則的值是。解析:,所以答案:3考點二:導(dǎo)數(shù)的幾何意義。例2.已知函數(shù)的圖象在點處的切線方程是,則。解析:因為,所以,由切線過點,可得點M的縱坐標為,所以,所以答案:3。解析:,點處切線的斜
2025-04-04 05:08
【總結(jié)】難點圓錐曲線綜合題 圓錐曲線的綜合問題包括:解析法的應(yīng)用,與圓錐曲線有關(guān)的定值問題、最值問題、參數(shù)問題、應(yīng)用題和探索性問題,圓錐曲線知識的縱向聯(lián)系,圓錐曲線知識和三角、復(fù)數(shù)等代數(shù)知識的橫向聯(lián)系,...
2025-03-15 03:43
【總結(jié)】2006年中考試題分類匯編--函數(shù)綜合題 1.?。?006183。陜西?。┤鐖D,已知點A(tanα,0),B(tanβ,0)在x軸正半軸上,點A在點B的左邊,α、β是以線段AB為斜邊、頂點C在x軸上方的Rt△ABC的兩個銳角. ?。?)若二次函數(shù)y=-x2-kx+(2+2k-k2)的圖象經(jīng)過A、B兩點,求它的解析式; ?。?)點C在(1)中求出的二次函數(shù)的圖象上嗎?請說明理
2025-01-14 02:25
【總結(jié)】高中數(shù)學函數(shù)專題1.已知在實數(shù)域R上可導(dǎo)的函數(shù)對任意實數(shù)都有若存在實數(shù),使,求證:(1);(2)上是單調(diào)函數(shù)證明:(1)又,(2)即在R上是單調(diào)遞增函數(shù).2.已知拋物線C的方程為為焦點,直線與C交于A、B兩點,P為AB的中點,直線過P、F點。(1)求直線的斜率關(guān)于的解析式,并指出定義域;(2)求函數(shù)的反函數(shù);(3)求與的夾角的取值范圍。(4)解不等
2025-08-05 18:29
【總結(jié)】秋風清,秋月明,落葉聚還散,寒鴉棲復(fù)驚。導(dǎo)數(shù)題型分析及解題方法一、考試內(nèi)容導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,幾種常見函數(shù)的導(dǎo)數(shù);兩個函數(shù)的和、差、基本導(dǎo)數(shù)公式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,函數(shù)的最大值和最小值。二、熱點題型分析題型一:利用導(dǎo)數(shù)研究函數(shù)的極值、最值。1.32()32fxxx???在
2025-01-08 20:24