【總結】第二章一維隨機變量及概率分布東莞理工學院數(shù)學教研室為了全面地研究隨機試驗的結果,揭示隨機現(xiàn)象的統(tǒng)計規(guī)律性,我們將隨機試驗的結果與實數(shù)對應起來,將隨機試驗的結果數(shù)量化,因而引入隨機變量的概念。那么什么是隨機變量呢?新課引入:問題1:某人射擊一次,可能出現(xiàn):問題2:某次產(chǎn)品檢查,在可
2025-08-01 17:32
【總結】概率與數(shù)理統(tǒng)計課件天津科技大學理學院數(shù)學系第8講隨機變量及其概率分布習題課第8講隨機變量及其概率分布習題課?教學目的:通過對隨機變量(一維,二維為主)及其概率分布的歸納總結,及典型題的分析講解,使學生對概部分內(nèi)容有較深的理解與認識.?教學重點:隨機變量(離散型,連續(xù)型),分布函數(shù),六個重要的分布(兩點,二
2024-10-16 05:11
【總結】一、二維隨機變量及其分布函數(shù)二、離散型二維隨機變量三、二維連續(xù)型隨機變量§二維隨機變量上頁下頁鈴結束返回首頁上頁下頁鈴結束返回首頁一、二維隨機變量及其分布函數(shù)定義1設E是一個隨機試驗,其樣本空間為S={e},設X=X(e)和Y=Y(e)是定義在S上的兩
2024-12-08 10:20
【總結】第一節(jié)數(shù)學期望第二節(jié)方差第三節(jié)協(xié)方差與相關系數(shù)返回基本要求:1.深刻理解數(shù)學期望與方差的定義;2.熟練掌握期望與方差的性質(zhì);3.能熟練地運用期望與方差的定義或性質(zhì)求一些常見的隨機變量的期望與方差;,會求協(xié)方差與相關系數(shù);5.了解高階矩的概念.學時數(shù)6返回
2025-01-19 14:50
【總結】第四章隨機變量的數(shù)字特征前面討論了隨機變量的分布函數(shù),從中知道隨機變量的分布函數(shù)能完整地描述隨機變量的統(tǒng)計規(guī)律性.但在許多實際問題中,人們并不需要去全面考察隨機變量的變化情況,而只要知道它的某些數(shù)字特征即可.例如,在評價某地區(qū)糧食產(chǎn)量的水平時,通常只要知道該地區(qū)糧食的平均產(chǎn)量;又如,在評價一批棉花的質(zhì)量時,既要
2025-08-11 18:16
【總結】第3講幾何概型【高考會這樣考】以選擇題或填空題的形式考查與長度或面積有關的幾何概型的求法是高考對本內(nèi)容的熱點考法,特別是與平面幾何、函數(shù)等結合的幾何概型是高考的重點內(nèi)容.新課標高考對幾何概型的要求較低,因此高考試卷中此類試題以低、中檔題為主.【復習指導】本講復習時,準確理解幾何概型的意義、構造出度量區(qū)域是用幾何概型求隨機事件概率的關鍵,復習
2025-08-22 04:19
【總結】§離散型隨機變量及其分布律用隨機變量描述隨機現(xiàn)象,,,,如果知道了它取各個可能值的概率,,其概率分布可通過它取各個可能值的概率來描述,.離散型隨機變量的分布律設是離散型隨機變量,其所有可能的取值為,取各個可能值的概率為,()稱()式為的分布律.分布律常用如下的表格表示:……
2025-06-28 10:21
【總結】§3連續(xù)型隨機變量除了離散型隨機變量之外,還有非離散型的隨機變量,這些隨機變量的取值已不再是有限個或可列個。在這類非離散型隨機變量中,有一類常見而重要的類型,即所謂連續(xù)型隨機變量。粗略地說,連續(xù)型隨機變量可以在某特定區(qū)間內(nèi)任何一點取值。例如某種樹的高度;測量的誤差;計算機的使用壽命等等都是連續(xù)型隨機變量。對于連續(xù)型隨機變量,不能一
2025-08-23 18:24
【總結】第二章隨機變量?隨機變量及其分布函數(shù)?離散型隨機變量?連續(xù)型隨機變量?隨機變量函數(shù)的分布在實際問題中,隨機試驗的結果可用數(shù)量來表示,這就產(chǎn)生了隨機變量的概念?!祀S機變量及其分布函數(shù)一方面,有些試驗,其結果與數(shù)有關(試驗結果就是一個數(shù));
2025-06-17 06:28
【總結】概率練習二1、設隨機變量~,且,則參數(shù)()-101b2、已知隨機變量的分布律為分布函數(shù)為,則常數(shù)(),(),(),(),()3、設~,~,若
2025-08-23 05:47
【總結】二、隨機變量的概念一、隨機變量的引入第一節(jié)隨機變量第二章隨機變量及其分布概率論是從數(shù)量上來研究隨機現(xiàn)象內(nèi)在規(guī)律性的,為了更方便有力地研究隨機現(xiàn)象,就要用數(shù)學分析的方法來研究,因此為了便于數(shù)學上的推導和計算,就需將任意的隨機事件數(shù)量化.當把一些非數(shù)量表示的隨機事件用數(shù)字來表示時,就建立起了
【總結】年級高三學科數(shù)學內(nèi)容標題概率(古典概率、條件概率、離散型隨機變量)(理科)編稿老師胡居化一、學習目標:1.了解事件、頻率、、互斥事件與獨立事件的含義、互斥事件與對立事件的區(qū)別,并能進行簡單的概率計算.2.理解隨機變量、離散型隨機變量的分布列的含義及性質(zhì),并能求出離散型隨機變量的分布列及數(shù)學期望(均值)與方差.3.了解模擬方法(幾何
2025-04-17 04:35
【總結】標準正態(tài)分布隨機變量的概率計算執(zhí)教者張燕教學目標?理解正態(tài)分布函數(shù)Ф(x)=P(X≤x)表示的意義?掌握正態(tài)分布函數(shù)表示的函數(shù)具有的性質(zhì)并能夠熟練運用其性質(zhì)解決相關習題).1,0(,,1,0),(2NσμσμN記為態(tài)分布的
2024-10-16 12:02
【總結】兩事件A,B獨立的定義是:若P(AB)=P(A)P(B)則稱事件A,B獨立.設X,Y是兩個隨機變量,若對任意的x,y,有)()(),(yYPxXPyYxXP?????則稱X,Y相互獨立.)()(),(yFxFyxFYX?用分布函數(shù)表示,即概率論與數(shù)理統(tǒng)計若X,Y獨立,則g(X),g(Y)
2025-02-21 06:42
【總結】一、重點與難點二、主要內(nèi)容三、典型例題第三章多維隨機變量及其分布習題課一、重點與難點二維隨機變量的分布有關概率的計算和隨機變量的獨立性條件概率分布隨機變量函數(shù)的分布定義聯(lián)合分布函數(shù)聯(lián)合分布律聯(lián)合概率
2024-10-16 12:15