【正文】
?(1)2 0 1( ) ( )0xxf x F xo the rwise????????( 2)密度函數(shù)為 均勻分布 若連續(xù)型隨機變量 X的概率密度為 1()0a x bfx ba? ???? ???? 其它則稱 X在區(qū)間 ( a, b)上服從均勻分布.記為 X ~ U (a, b) 0,( ) ,1,xaxaF x a x bbaxb?????? ? ???????Uniform Distribution ? 定義 ? 分布函數(shù) 0 a b x X“等可能”地取區(qū)間( a,b)中的值,這里的“等可能”理解為: X落在區(qū)間( a,b)中任意等長度的子區(qū)間內(nèi)的可能性是相同的。 設隨機變量 X為候車時間, X 服從( 0, 5)上的 均勻分布 220012( 2 ) ( 2 ) ( )55P X F f x d x d x? ? ? ? ???解 例 X~ U( 0, 5) 設 ξ 在 [1, 5]上服從均勻分布,求方程 2 2 1 0xx ?? ? ?有實根的概率。 0 a b x ( ) c d { } ( )1dcdcP c X d f x d xdcdxb a b a? ? ????????? 意義 102電車每 5分鐘發(fā)一班,在任一時刻 某一乘客到了車站。 分布函數(shù)表示事件的概率 ? P( Xb) =F(b) ? P( a≤Xb) =F(b) ﹣ F(a) ? P( X≥b) =1﹣ P( Xb) =1 F(b) P( a≤Xb) =P(X b)P(Xa)= F(b) F(a) 一般地,對離散型隨機變量 X~ P{X= xk}= pk, k= 1, 2, … 其分布函數(shù)為