【總結(jié)】 常微分方程求解的高階方法畢業(yè)論文目錄第一章前言 1 1 1 1、通解與特解 1 2. 2 3 4第二章數(shù)值解法公共程序模塊分析 5第三章歐拉(Euler)方法 7Euler方法思想 7Euler方法的誤差估計(jì) 8 8 8 9第四章休恩方法 10休恩方法思想 10 10第五章泰勒
2025-06-25 13:51
【總結(jié)】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【總結(jié)】微分方程建模Ⅱ動態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個(gè)預(yù)測戰(zhàn)爭結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭的,也有考慮游擊戰(zhàn)爭的,以及雙方分別使用正規(guī)部隊(duì)和游擊部隊(duì)的所謂混合戰(zhàn)爭的。后來人們對這些模型作了改進(jìn)用以分析歷史上一些著名的戰(zhàn)爭,如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭。預(yù)測戰(zhàn)爭勝負(fù)應(yīng)該考慮哪些因素?;
2025-08-16 00:58
【總結(jié)】微分方程的近似解法差分解法對三類典型偏微分方程的定解問題,差分解法的基本思想是用函數(shù)的差商代替微商,從而把微分運(yùn)算化成代數(shù)運(yùn)算,求解出在定解區(qū)域中足夠多的點(diǎn)上的近似值。1、差分與差分方程n函數(shù)f(x)的導(dǎo)數(shù)是函數(shù)的增量與自變量增量的比值當(dāng)自變量增量趨于零的極限。n即:一階差商高階差商由差商代替微商的誤差偏導(dǎo)數(shù)的差商表示差分方程
2025-08-05 07:11
【總結(jié)】五邑大學(xué)本科畢業(yè)論文I摘要微分方程是表達(dá)自然規(guī)律的一種自然的數(shù)學(xué)語言。它從生產(chǎn)實(shí)踐與科學(xué)技術(shù)中產(chǎn)生,而又成為現(xiàn)代科學(xué)技術(shù)中分析問題與解決問題的一個(gè)強(qiáng)有力的工具。人們在探求物質(zhì)世界某些規(guī)律的過程中,一般很難完全依靠實(shí)驗(yàn)觀測認(rèn)識到該規(guī)律,反而是依照某種規(guī)律存在的聯(lián)系常常容易被我們捕捉到,而這種規(guī)律用數(shù)學(xué)語言表達(dá)出來,其結(jié)果往往形成一個(gè)微分方程,
2025-05-11 13:19
【總結(jié)】常微分方程初值問題的數(shù)值解法第6章引言在實(shí)際問題中,常需要求解微分方程(如發(fā)電機(jī)轉(zhuǎn)子運(yùn)動方程)。只有簡單的和典型的微分方程可以求出解析解,而在實(shí)際問題中的微分方程往往無法求出解析解。常微分方程:????????0)(),(yaybxayxfy-(1)??????????
2025-05-15 07:53
【總結(jié)】微分方程邊值問題的數(shù)值方法本部分內(nèi)容只介紹二階常微分方程兩點(diǎn)邊值問題的的打靶法和差分法。二階常微分方程為 當(dāng)關(guān)于為線性時(shí),即,此時(shí)變成線性微分方程 對于方程或,其邊界條件有以下3類:第一類邊界條件為 當(dāng)或者時(shí)稱為齊次的,否則稱為非齊次的。第二類邊界條件為 當(dāng)或者時(shí)稱為齊次的,否則稱為非齊次的。第三類邊界條件為 其中,當(dāng)或者稱為
2025-06-07 19:14
【總結(jié)】機(jī)動目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【總結(jié)】Thursday,May26,20221第二章系統(tǒng)的數(shù)學(xué)模型Thursday,May26,20222本章的主要內(nèi)容控制系統(tǒng)微分方程建立傳遞函數(shù)控制系統(tǒng)的框圖和傳遞函數(shù)控制系統(tǒng)的信號流圖Thursday,May26,20223概述
2025-04-29 00:54
【總結(jié)】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔(dān)溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財(cái)奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2024-10-19 18:02
【總結(jié)】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡化;?運(yùn)動學(xué)從幾何觀點(diǎn)研究物體的運(yùn)動,而不涉及物體所受的力;?動力學(xué)研究物體的機(jī)械運(yùn)動與作用力之間的關(guān)系。動力學(xué)就是從因果關(guān)系上論述物體的機(jī)械運(yùn)動。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運(yùn)動學(xué)則是動力學(xué)的特殊情況。低速、宏觀物體的機(jī)械運(yùn)動的普遍規(guī)律。
2025-06-16 14:51
【總結(jié)】第6章常微分方程的數(shù)值解法???????0')(),,(uaubtautfu0()(,())dtautufu??????uuLutfut
2025-05-02 05:32
【總結(jié)】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(diǎn)(1,2),
2025-02-21 12:49
【總結(jié)】第22頁共22頁拉普拉斯變換在求解微分方程中的應(yīng)用學(xué)生姓名:岳艷林班級:物電系物本0801班學(xué)號:200809110036指導(dǎo)老師:韓新華摘要通過對拉普拉斯變換在求解常微分方程、典型偏
2025-07-23 09:41
【總結(jié)】引例:破案問題某公安局于晚上7時(shí)30分發(fā)現(xiàn)一具尸體,當(dāng)天晚上8點(diǎn)20分,法醫(yī)測得尸體溫度為℃,1小時(shí)后,尸體被抬走的時(shí)候又測得尸體的溫度為℃。假定室溫在幾個(gè)小時(shí)內(nèi)均為℃,由案情分析得知張某為此案的主要嫌疑犯,但張某矢口否認(rèn),并有證人說:“下午張某一直在辦公室,下午5時(shí)打了一個(gè)電話后才離開辦公室”
2024-10-16 18:30