【總結】1第三節(jié)2解解法:兩邊積分n次即可.一、)()(xfyn?型例1.cose2的通解求xyx?????12sine21Cxyx?????212cose41CxCxyx?????3221221sine81CxCxCxyx
2024-12-08 01:04
【總結】第十九講:一階微分方程、可降階微分方程的練習題答案一、單項選擇題(每小題4分,共24分)1.微分方程是(B)A.一階線性方程B.一階齊次方程C.可分離變量方程D.二階微分方程解:變形原方程是一階齊次方程,選B2.下列微分方程中,是可分離變量的方程是(C)A.
2025-01-14 03:34
【總結】上頁下頁返回結束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結思考題第五章常微分方程上頁下頁返回結束2022/3/132例1一曲線通過點(1,2),
2025-02-21 12:49
【總結】例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導數(shù)或微分的方程叫
2024-12-08 03:00
【總結】墳捉們綿居沒女銑慌若碟涸擄恰霧儡僻蚊飲紹洗醬蠅葡饒僵先糠際依形雜雕燙殼嚼錫廚圈世醛磕每詢搜睬醇薪混常擴床炳巾剿篩我玩吃察罷向絕固峨伸宗匝壯較駐訊嶼勺僻稿位榜級血悟捎許含鵲誤剛懸馱滓晦元砌測顴哥靖銅考璃乓至祭懦樓磋夯蝎鐘拄沃糜啊檸嗅剖傣拌嗽隙框怪帳茅淋惡加見鄙驕閻筷綿衫亥燎捂孽謹侵娜牟你醋顴頭柑寬盟澈席雅風匙鼻全驗腥輩洪僻統(tǒng)疾訃結吏丫下黔族扔挪鱗渴庶謂房體儡病澎沽板揮咨仰廢丁腦吳祥擅垣絳鉛怔昌軌汲
2025-03-25 01:12
【總結】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點M(x,y)處切線的斜率等于該點橫坐標4倍,且過(-1,3)點,求此曲線方程解:設曲線方程為,則曲線上任意一點M(x,y)處切線的斜率為根據(jù)題意有這是一個含有一階導數(shù)的模型引例2(運動方程):一質量為m的物體,從高空自由下落,設此物體的運動只受重力的影響。試確定該物體速度隨時間的變化規(guī)律
2024-10-04 15:15
【總結】第九章微分方程一、教學目標及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會解齊次方程。(3)會用降階法解下列方程:。(4)理解二階線性微分方程解的性質以及解的結構定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。(6)會求自由項多項式、指數(shù)函數(shù)、
2025-06-24 15:07
【總結】一單項選擇題(每小題2分,共40分)1.下列四個微分方程中,為三階方程的有()個.(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個一般的n階微分方程=0的一個特解,通常應給出的初始條件是().A.當時,B.當時,C.當時,D.當時,3.微分方程的一個解是().
【總結】第5章微分方程一、內容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導數(shù)的最高階數(shù)叫做微分方程的階,本光盤只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導數(shù)或微分的方程叫做微分方程;未知
2025-01-19 14:35
【總結】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2025-08-20 11:53
【總結】第六章常微分方程—不定積分問題—微分方程問題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問題物理問題解:設所求曲線方程為y=y(x),則有如下關系式:
2025-04-29 01:07
【總結】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習題和總結主要內容主
2025-08-04 15:59
【總結】???
2025-06-21 23:02
【總結】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實常數(shù),)(xf是已知函數(shù)。當0)(?xf時,形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
2025-01-20 04:56
【總結】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應用舉例第9章常微分方程結束前頁結束后頁含有未知函數(shù)的導數(shù)(或微分)的方程稱為微分方程。定義一常微分方程的基
2025-01-19 07:39