【總結】復數(shù)的幾何意義雙基達標?限時20分鐘?1.復數(shù)z=-1+i1+i-1,則在復平面內z所對應的點在第______象限.解析z=?-1+i??1-i??1+i??1-i?-1=2i2-1=-1+i.答案第二象限2.在復平面內,復數(shù)21+i對應的點與原點的距離是____
2024-12-05 09:28
【總結】§本課時欄目開關填一填研一研練一練【學習要求】1.了解導數(shù)在解決實際問題中的作用.2.掌握利用導數(shù)解決簡單的實際生活中的優(yōu)化問題.【學法指導】1.在利用導數(shù)解決實際問題的過程中體會建模思想.2.感受導數(shù)知識在解決實際問題中的作
2024-11-18 08:07
【總結】1.2.2函數(shù)的和、差、積、商的導數(shù)【學習要求】1.理解函數(shù)的和、差、積、商的求導法則.2.理解求導法則的證明過程,能夠綜合運用導數(shù)公式和導數(shù)運算法則求函數(shù)的導數(shù).【學法指導】應用導數(shù)的四則運算法則和已學過的常用函數(shù)的導數(shù)公式可迅速解決一類簡單函數(shù)的求導問題.要透徹理解函數(shù)求導法則的結構內涵,注
2024-11-17 23:13
【總結】1.3.3最大值與最小值【學習要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導數(shù)求某定義域上函數(shù)的最值.【學法指導】弄清極值與最值的區(qū)別是學好本節(jié)的關鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2024-11-17 23:19
【總結】1.2.3簡單復合函數(shù)的導數(shù)【學習要求】1.了解復合函數(shù)的概念,掌握復合函數(shù)的求導法則.2.能夠利用復合函數(shù)的求導法則,并結合已經(jīng)學過的公式、法則進行一些復合函數(shù)的求導(僅限于形如f(ax+b)的導數(shù)).【學法指導】復合函數(shù)的求導將復雜的問題簡單化,體現(xiàn)了轉化思想;學習中要通過中間變量的引入理解
【總結】1.5.3微積分基本定理【學習要求】1.直觀了解并掌握微積分基本定理的含義.2.會利用微積分基本定理求函數(shù)的積分.【學法指導】通過探究變速直線運動物體的速度與位移的關系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導數(shù)和定積分之間的內在聯(lián)系,而且還提供了計算定積分的一種有效方法.本
【總結】本課時欄目開關填一填研一研練一練1.3.1單調性【學習要求】1.結合實例,直觀探索并掌握函數(shù)的單調性與導數(shù)的關系.2.能利用導數(shù)研究函數(shù)的單調性,并能夠利用單調性證明一些簡單的不等式.3.會求函數(shù)的單調區(qū)間(其中多項式函數(shù)一般不超過三次).【學法指導】結合
2024-11-18 08:08
【總結】本課時欄目開關填一填研一研練一練1.1.1平均變化率【學習要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的實際問題.【學法指導】平均變化率可以刻畫函數(shù)值在某個范圍內變化的快慢程度,理解
【總結】§導數(shù)在研究函數(shù)中的應用1.單調性課時目標掌握導數(shù)與函數(shù)單調性之間的關系,會利用導數(shù)研究函數(shù)的單調性,會求不超過三次的多項式函數(shù)的單調區(qū)間.1.導函數(shù)的符號與函數(shù)的單調性的關系:如果在某個區(qū)間內,函數(shù)y=f(x)的導數(shù)________,則函數(shù)y=f(x)這個區(qū)間上是增函數(shù);如果在某個區(qū)
2024-12-05 09:29
【總結】定積分課時目標..分.1.定積分的概念:一般地,設函數(shù)f(x)在區(qū)間[a,b]上有意義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)間長度為Δx(Δx=b-an),在每個小區(qū)間上取一點,依次為x1,x2,…,xn,作和.Sn=f(x1)Δx+f(x2)Δx+…+
2024-12-05 03:08
【總結】1導數(shù)的運算.2常數(shù)函數(shù)與冪函數(shù)的導數(shù)3???,,.,,如何求它的導數(shù)呢數(shù)對于函那么度體在某一時刻的瞬時速物理意義是運動物點處的切線的斜率在某導數(shù)的幾何意義是曲線我們知道xfy???.,,,個定值所趨于的那時趨近于就是求出當?shù)膶?shù)求函數(shù)根據(jù)函數(shù)的定義xyxxfy?
2024-11-18 01:21
【總結】第3章數(shù)系的擴充與復數(shù)的引入§數(shù)系的擴充課時目標i的必要性,了解數(shù)集的擴充過程.中由實數(shù)集擴展到復數(shù)集出現(xiàn)的一些基本概念.,理解復數(shù)相等的充要條件.1.復數(shù)的有關概念(1)虛數(shù)單位把平方等于-1的數(shù)用符號i表示,規(guī)定__________,i叫作虛數(shù)單位.(2
【總結】§2導數(shù)的概念及其幾何意義導數(shù)的概念雙基達標?限時20分鐘?1.函數(shù)f(x)在x0處可導,則limh→0f?x0+h?-f?x0?h().A.與x0、h都有關B.僅與x0有關,而與h無關C.僅與h有關,而與x0無關D.與x0、h均無關答案B
2024-12-03 00:14
【總結】§數(shù)學歸納法課時目標.2.能用數(shù)學歸納法證明一些簡單的數(shù)學命題.握數(shù)學歸納法的實質及與歸納,猜想的關系..1.數(shù)學歸納法公理對于某些________________的數(shù)學命題,可以用數(shù)學歸納法證明.2.證明步驟對于某些與正整數(shù)有關的數(shù)學命題,如果(1)當n________
【總結】導數(shù)在實際生活中的應用新課引入:導數(shù)在實際生活中有著廣泛的應用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)解函數(shù)應用題時,要注意四個步驟:1、閱讀理解,審清題意讀題時要做到逐字逐句,讀懂題中的文字敘述
2024-11-17 15:20