【總結(jié)】最大值與最小值教學(xué)目的:⒈使學(xué)生理解函數(shù)的最大值和最小值的概念,掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最?。┲当赜械某浞謼l件;⒉使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法和步驟教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法.教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和
2024-11-20 00:26
【總結(jié)】§本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用.2.掌握利用導(dǎo)數(shù)解決簡(jiǎn)單的實(shí)際生活中的優(yōu)化問(wèn)題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實(shí)際問(wèn)題的過(guò)程中體會(huì)建模思想.2.感受導(dǎo)數(shù)知識(shí)在解決實(shí)際問(wèn)題中的作
2024-11-18 08:07
【總結(jié)】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過(guò)程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運(yùn)算法則和已學(xué)過(guò)的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類(lèi)簡(jiǎn)單函數(shù)的求導(dǎo)問(wèn)題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【總結(jié)】1.2.3簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)【學(xué)習(xí)要求】1.了解復(fù)合函數(shù)的概念,掌握復(fù)合函數(shù)的求導(dǎo)法則.2.能夠利用復(fù)合函數(shù)的求導(dǎo)法則,并結(jié)合已經(jīng)學(xué)過(guò)的公式、法則進(jìn)行一些復(fù)合函數(shù)的求導(dǎo)(僅限于形如f(ax+b)的導(dǎo)數(shù)).【學(xué)法指導(dǎo)】復(fù)合函數(shù)的求導(dǎo)將復(fù)雜的問(wèn)題簡(jiǎn)單化,體現(xiàn)了轉(zhuǎn)化思想;學(xué)習(xí)中要通過(guò)中間變量的引入理解
【總結(jié)】1.5.3微積分基本定理【學(xué)習(xí)要求】1.直觀了解并掌握微積分基本定理的含義.2.會(huì)利用微積分基本定理求函數(shù)的積分.【學(xué)法指導(dǎo)】通過(guò)探究變速直線(xiàn)運(yùn)動(dòng)物體的速度與位移的關(guān)系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,而且還提供了計(jì)算定積分的一種有效方法.本
【總結(jié)】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練1.3.1單調(diào)性【學(xué)習(xí)要求】1.結(jié)合實(shí)例,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡(jiǎn)單的不等式.3.會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).【學(xué)法指導(dǎo)】結(jié)合
2024-11-18 08:08
【總結(jié)】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練1.1.1平均變化率【學(xué)習(xí)要求】1.理解并掌握平均變化率的概念.2.會(huì)求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說(shuō)明生活中的實(shí)際問(wèn)題.【學(xué)法指導(dǎo)】平均變化率可以刻畫(huà)函數(shù)值在某個(gè)范圍內(nèi)變化的快慢程度,理解
【總結(jié)】習(xí)題課一、基礎(chǔ)過(guò)關(guān)1.函數(shù)f(x)=12ex(sinx+cosx)在區(qū)間????0,π2上的值域?yàn)開(kāi)_______.2.函數(shù)y=f(x)的圖象如下圖所示,則導(dǎo)函數(shù)y=f′(x)的圖象可能是________.(填序號(hào))3.使y=sinx+ax在R上是增函數(shù)的a的取值范圍為_(kāi)______
2024-12-05 06:24
【總結(jié)】函數(shù)的極值與導(dǎo)數(shù)(a,b)內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對(duì)x∈(a,b),如果
2024-11-18 12:13
【總結(jié)】函數(shù)的最大(小)值與導(dǎo)數(shù)21、函數(shù)的極值設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,?如果對(duì)X0附近的所有點(diǎn),都有f(x)f(x0),則f(x0)是函數(shù)f(x)的一個(gè)極小值,
2024-11-17 12:01
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)復(fù)習(xí)回顧基本初等函數(shù)的求導(dǎo)公式簡(jiǎn)記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2025-07-25 22:48
【總結(jié)】1.最大值與最小值一、基礎(chǔ)過(guò)關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是________,________.2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是________.3.函數(shù)y=lnxx的最大值為_(kāi)_______.4.函數(shù)f(x)=xex的最
【總結(jié)】第1課時(shí)數(shù)學(xué)歸納法雙基達(dá)標(biāo)?限時(shí)20分鐘?1.用數(shù)學(xué)歸納法證明“2nn2+1對(duì)于n≥n0的自然數(shù)n都成立”時(shí),第一步證明中的起始值n0應(yīng)取________.解析當(dāng)n取1、2、3、4時(shí)2nn2+1不成立,當(dāng)n=5時(shí),25=3252+1=26,第一個(gè)能
2024-12-04 20:00
【總結(jié)】導(dǎo)數(shù)及其應(yīng)用第一章導(dǎo)數(shù)的應(yīng)用第3課時(shí)導(dǎo)數(shù)的實(shí)際應(yīng)用第一章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)低碳生活(lowcarbonlife)可以理解為減少二氧化碳的排放,就是低能量、低消耗、低開(kāi)支的生活.低碳生活節(jié)能環(huán)保,勢(shì)在必行.現(xiàn)實(shí)生活中,當(dāng)汽車(chē)行駛路程一定時(shí),我們希望汽油
2024-11-18 15:23
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第2課時(shí)利用導(dǎo)數(shù)研究函數(shù)的極值課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.已知函數(shù)f(x)在點(diǎn)x0處連續(xù),下列命題中正確的是()A.導(dǎo)數(shù)為零的點(diǎn)一定是極值點(diǎn)B.如果在點(diǎn)x0附近的左側(cè)f′(x)0,右側(cè)f′(x)0,那么f(x0)是極小
2024-12-03 11:28