【總結(jié)】第二章檢測(cè)題A時(shí)間120分鐘,滿分150分。一、選擇題(本大題共10個(gè)小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.在空間中,已知?jiǎng)狱c(diǎn)P(x,y,z)滿足z=0,則動(dòng)點(diǎn)P的軌跡是()A.平面B.直線C.不是平面,也不是直線D.
2024-12-03 00:16
【總結(jié)】第二章檢測(cè)題B時(shí)間120分鐘,滿分150分。一、選擇題(本大題共10個(gè)小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.下列說法中不正確的是()A.平面α的法向量垂直于與平面α共面的所有向量B.一個(gè)平面的所有法向量互相平行C.如果兩個(gè)平面的法向量垂直,那么這兩個(gè)
2024-12-03 00:15
【總結(jié)】,第三章空間向量與立體幾何,3.2立體幾何中的向量方法第2課時(shí)空間向量與垂直關(guān)系,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期...
2024-10-22 19:06
【總結(jié)】F1F2F3aC'B'A'D'DABC空間向量及其線性運(yùn)算教學(xué)目標(biāo)1.運(yùn)用類比方法,經(jīng)歷向量及其運(yùn)算由平面向空間推廣的過程;2.了解空間向量的概念,掌握空間向量的線性運(yùn)算及其性質(zhì);3.理解空間向量共線的充要條件重點(diǎn)難點(diǎn)教
2024-11-20 00:30
【總結(jié)】本章整合從平面向量到空間向量空間向量的運(yùn)算空間向量的加減法空間向量的數(shù)乘空間向量的數(shù)量積向量的坐標(biāo)表示和空間向量基本定理空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示空間向量基本定理空間向量運(yùn)算的坐標(biāo)表示用向量討論垂直與平行
2024-11-16 23:21
【總結(jié)】(一)教學(xué)要求:了解共線或平行向量的概念,掌握表示方法;理解共線向量定理及其推論;掌握空間直線的向量參數(shù)方程;會(huì)運(yùn)用上述知識(shí)解決立體幾何中有關(guān)的簡(jiǎn)單問題.教學(xué)重點(diǎn):空間直線、平面的向量參數(shù)方程及線段中點(diǎn)的向量公式.教學(xué)過程:一、復(fù)習(xí)引入1.回顧平面向量向量知識(shí):平行向量或共線向量?怎樣判定向量與非零向量是否共線?方向相同或者相反的非零向量叫做平行向量.由于任何一組平行向
2025-06-07 23:19
【總結(jié)】空間“綜合”問題向量法解立體幾何問題的優(yōu)點(diǎn):1.思路容易找,甚至可以公式化;一般充分結(jié)合圖形發(fā)現(xiàn)向量關(guān)系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運(yùn)算就可以解決問題.2.不需要添輔助線和進(jìn)行困難的幾何證明;3.若坐標(biāo)系容易建立,更是水到渠成.復(fù)習(xí)引入如圖,已知:
2024-11-18 12:14
【總結(jié)】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
2024-11-17 12:02
【總結(jié)】ZPZ空間“距離”問題一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量
【總結(jié)】空間向量的坐標(biāo)一向量在軸上的投影與投影定理二向量在坐標(biāo)軸上的分量與向量的坐標(biāo)三向量的模與方向余弦的坐標(biāo)表示式一、向量在軸上的投影與投影定理.上的有向線段是軸,設(shè)有一軸uABuuAB.ABABABuuABuABAB==llllll,即的值,
2024-11-17 23:31
【總結(jié)】,第三章空間向量與立體幾何,3.1空間向量及其運(yùn)算空間向量的正交分解及其坐標(biāo)表示,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期...
2024-10-22 19:05
【總結(jié)】平面向量空間向量推廣到立體幾何問題(研究的基本對(duì)象是點(diǎn)、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進(jìn)一步來體會(huì)向量這一工具在立體幾何中的應(yīng)用.前面,我們把。+=,使,實(shí)數(shù)對(duì)共面的充要條件是存在與向量不共線,則向量如果兩個(gè)向量byaxp
【總結(jié)】數(shù)量積公式巧證垂直問題對(duì)于空間兩個(gè)非零向量a,b來說,如果它們的夾角??,ab,那么我們定義它們的數(shù)量積為cos??abab.特別地,當(dāng)兩向量垂直時(shí),0???abab.利用該結(jié)論,可以很好地解決立體幾何中線線垂直或線面垂直的問題.1.證明直線與直線垂直,可以轉(zhuǎn)化為證明這兩條直線上的非零向量的數(shù)量積為零.反之亦成立.
2024-11-20 00:26
【總結(jié)】第1章立體幾何初步(A)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.將一個(gè)等腰梯形繞它的較長(zhǎng)的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體包括________________.2.一個(gè)三角形在其直觀圖中對(duì)應(yīng)一個(gè)邊長(zhǎng)為1的正三角形,原三角形的面積為________.
2024-12-05 00:28
【總結(jié)】2.1隨機(jī)變量及其概率分布【課標(biāo)要求】1.了解隨機(jī)變量的意義.2.會(huì)運(yùn)用計(jì)數(shù)方法和概率知識(shí)求簡(jiǎn)單的隨機(jī)變量的分布列.3.理解隨機(jī)變量分布的性質(zhì).【核心掃描】1.隨機(jī)變量的概念及離散型隨機(jī)變量分布列的概念.(重點(diǎn))2.離散型隨機(jī)變量分布列的表示方法和性質(zhì).(難點(diǎn))自學(xué)導(dǎo)引1.
2024-11-18 08:07