【總結(jié)】初四數(shù)學(xué)二次函數(shù)中的最大面積專題練習(xí)題1.如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC.拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.(1)求拋物線的解析式.(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t.①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接P
2025-03-24 06:27
【總結(jié)】課題淺談與二次函數(shù)有關(guān)的面積問題課型習(xí)題課第(一)課時(shí)授課時(shí)間教學(xué)目標(biāo)知識(shí)和能力能夠根據(jù)二次函數(shù)中不同圖形的特點(diǎn)選擇方法求圖形面積。過程和方法通過觀察、分析、概括、總結(jié)等方法了解二次函數(shù)面積問題的基本類型,并掌握二次函數(shù)中面積問題的相關(guān)計(jì)算,從而體會(huì)數(shù)形結(jié)合思想和轉(zhuǎn)化思想在二次函數(shù)中的應(yīng)用。情感態(tài)度和價(jià)值觀由簡(jiǎn)單題入手逐漸
2025-04-16 12:51
【總結(jié)】......二次函數(shù)平行四邊形存在性問題例題一.解答題(共9小題)1.如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點(diǎn).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,
2025-03-24 06:26
【總結(jié)】......老師姓名學(xué)生姓名學(xué)管師學(xué)科名稱年級(jí)上課時(shí)間月日__:00--__:00課題名稱二次函數(shù)與平行四邊形的存
2025-03-24 06:24
【總結(jié)】一次函數(shù)動(dòng)點(diǎn)問題1如圖,直線的解析表達(dá)式為,且與軸交于點(diǎn),直線經(jīng)過點(diǎn),直線,交于點(diǎn).(1)求點(diǎn)的坐標(biāo);(2)求直線的解析表達(dá)式;(3)求的面積;(4)在直線上存在異于點(diǎn)的另一點(diǎn),使得與的面積相等,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
2025-03-24 05:35
【總結(jié)】........二次函數(shù)與三角形的存在性問題一、預(yù)備知識(shí)1、坐標(biāo)系中或拋物線上有兩個(gè)點(diǎn)為P(x1,y),Q(x2,y)(1)線段對(duì)稱軸是直線(2)AB兩點(diǎn)之間距離公式:中點(diǎn)公式:已知兩點(diǎn),則線段
【總結(jié)】專題二次函數(shù)中的面積計(jì)算問題[典型例題]第10題例.如圖,二次函數(shù)圖象與軸交于A,B兩點(diǎn)(A在B的左邊),與軸交于點(diǎn)C,頂點(diǎn)為M,為直角三角形,圖象的對(duì)稱軸為直線,點(diǎn)是拋物線上位于兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn),則的面積的最大值為(C)A.B.C.D.二次函數(shù)中面積問題常見類型:一、選擇填空中簡(jiǎn)單
【總結(jié)】二次函數(shù)零點(diǎn)問題【探究拓展】探究1:設(shè)分別是實(shí)系數(shù)一元二次方程和的一個(gè)根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實(shí)根為x1、x2,方程f(x)=x的兩實(shí)根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
2025-04-04 04:25
【總結(jié)】函數(shù)解題思路方法總結(jié):⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;⑵求二次函數(shù)的最大(?。┲敌枰门浞椒▽⒍魏瘮?shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;⑶根據(jù)圖象的位置判斷二次函數(shù)ax2+bx+c=0中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知
2025-06-23 13:54
【總結(jié)】......二次函數(shù)與四邊形一.二次函數(shù)與四邊形的形狀A(yù)例1.(浙江義烏市)如圖,拋物線與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.(1)求A、B兩點(diǎn)的坐標(biāo)及直
2025-06-23 21:39
【總結(jié)】........二次函數(shù)中直角三角形存在性問題1.找點(diǎn):在已知兩定點(diǎn),確定第三點(diǎn)構(gòu)成直角三角形時(shí),要么以兩定點(diǎn)為直角頂點(diǎn),,構(gòu)造兩條直線與已知直線垂直;以動(dòng)點(diǎn)為直角頂點(diǎn)時(shí),以已知線段為直徑構(gòu)造圓找點(diǎn)2.方法:以兩定點(diǎn)為直角
【總結(jié)】二次函數(shù)最大利潤問題,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.(1)求出每天的銷售利潤y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?(3)如果該企業(yè)要使每天的銷售利潤不低于4000
【總結(jié)】......二次函數(shù)恒成立問題2016年8月東莞莞美學(xué)校一、恒成立問題的基本類型:類型1:設(shè),(1)上恒成立;(2)上恒成立。類型2:設(shè)(1)當(dāng)時(shí),上恒成立,上恒成立(2)當(dāng)時(shí),上恒成立上
【總結(jié)】 個(gè)性化學(xué)案二次函數(shù)綜合應(yīng)用題(拱橋問題)適用學(xué)科數(shù)學(xué)適用年級(jí)初中三年級(jí)適用區(qū)域全國課時(shí)時(shí)長(分鐘)60知識(shí)點(diǎn)二次函數(shù)解析式的確定、二次函數(shù)的性質(zhì)和應(yīng)用教學(xué)目標(biāo)。2學(xué)會(huì)用二次函數(shù)知識(shí)解決實(shí)際問題,掌握數(shù)學(xué)建模的思想,進(jìn)一步熟悉,點(diǎn)坐標(biāo)和線段之間的轉(zhuǎn)化。,體會(huì)到數(shù)學(xué)來源于生活,又服務(wù)于生活,感受數(shù)學(xué)的應(yīng)用價(jià)值。教學(xué)重點(diǎn),并能理解
【總結(jié)】二次函數(shù)專題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),,過點(diǎn)作軸的平行線與拋物線交于點(diǎn),拋物線的頂點(diǎn)為,直線經(jīng)過、兩點(diǎn).(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對(duì)于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計(jì)算出這兩個(gè)角的大小,那么他們之間的大小關(guān)系就清楚了b