【總結(jié)】杭九年級數(shù)學(xué)校本作業(yè)編制人:含參數(shù)的二次函數(shù)問題姓名_________1、將二次函數(shù)的圖象向右平移1個(gè)單位,向上平移2個(gè)單位后,頂點(diǎn)在直線上,則的值為()A.2B.1C.0D.2、關(guān)于x的二次函數(shù)的圖象與x軸交于A,B兩點(diǎn),()A.點(diǎn)C的坐標(biāo)是(0,-1)B.點(diǎn)(1,-)在該二次
2025-03-24 23:42
【總結(jié)】函數(shù)、不等式恒成立問題解法(老師用)恒成立問題的基本類型:類型1:設(shè),(對于任意實(shí)數(shù)R上恒成立)(1)上恒成立;(2)上恒成立。類型2:設(shè)(給定某個(gè)區(qū)間上恒成立)(1)當(dāng)時(shí),上恒成立,上恒成立(2)當(dāng)時(shí),上恒成立上恒成立類型3:。類型4:恒成一、用一次函數(shù)的性質(zhì)對于一次函數(shù)有:例1:若不等式對滿足的所有都成立,求x
2025-03-24 12:15
【總結(jié)】學(xué)科數(shù)學(xué)課題名稱函數(shù)恒成立問題——參變分離法周次教學(xué)目標(biāo)教學(xué)重難點(diǎn)函數(shù)恒成立問題——參變分離法一、基礎(chǔ)知識:1、參變分離:顧名思義,就是在不等式中含有兩個(gè)字母時(shí)(一個(gè)視為變量,另一個(gè)視為參數(shù)),可利用不等式的等價(jià)變形讓兩個(gè)字母分居不等號的兩側(cè),即不等號的每一側(cè)都是只含有一個(gè)字母的表達(dá)式。然后可利用其中一個(gè)變量的范圍求出另一變量
2025-03-24 12:16
【總結(jié)】......二次函數(shù)最值問題一.選擇題(共8小題)1.如果多項(xiàng)式P=a2+4a+2014,則P的最小值是( )A.2010 B.2011 C.2012 D.20132.已知二次函數(shù)y=x2﹣6x+m的最小值是﹣
2025-06-23 13:56
【總結(jié)】二次函數(shù)專題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),,過點(diǎn)作軸的平行線與拋物線交于點(diǎn),拋物線的頂點(diǎn)為,直線經(jīng)過、兩點(diǎn).(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計(jì)算出這兩個(gè)角的大小,那么他們之間的大小關(guān)系就清楚了b
2025-04-04 04:23
【總結(jié)】第15頁函數(shù)專題四恒成立、能成立問題專題一、基礎(chǔ)理論回顧1、恒成立問題的轉(zhuǎn)化:恒成立;2、能成立問題的轉(zhuǎn)化:能成立;3、恰成立問題的轉(zhuǎn)化:在M上恰成立的解集為M
2025-06-18 20:33
【總結(jié)】樂學(xué)在線課程:咨詢電話:400-811-66881二次函數(shù)中的存在性問題(講義)一、知識點(diǎn)睛解決“二次函數(shù)中存在性問題”的基本步驟:①____________.研究確定圖形,先畫圖解決其中一種情形.②①的結(jié)果是否合理,再找其他分類,類比
2025-01-10 14:34
【總結(jié)】......二次函數(shù)的最值問題二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無最小值.
2025-03-26 23:36
【總結(jié)】實(shí)際問題與二次函數(shù)現(xiàn)有60米的籬笆要圍成一個(gè)舉行場地;問題1若矩形的一邊長為10米,它的面積是多少?現(xiàn)有60米的籬笆要圍成一個(gè)矩形場地;問題2若矩形的長分別為15米、20米、25米時(shí),它們的面積分別是多少?問題3從上面兩問,同學(xué)們發(fā)現(xiàn)了什么?你能找到籬笆圍成的矩形的最大面積嗎?
2024-11-06 21:12
【總結(jié)】博興樂安實(shí)驗(yàn)學(xué)校韓少華回顧與練習(xí)求下列二次函數(shù)的最大值或最小值:⑴y=2x2+3x-4;⑵y=-x2+4x練習(xí):分別在下列各范圍上求函數(shù)y=x2+2x-3的最值(1)x為全體實(shí)數(shù)(2)1≤x≤2(3)-2≤x≤2xO-2y2-11情景
2025-08-15 20:24
【總結(jié)】實(shí)際問題與二次函數(shù)教案實(shí)驗(yàn)中學(xué)李三紅教學(xué)目標(biāo):1.通過對實(shí)際問題情景的分析確定二次函數(shù)的表達(dá)式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實(shí)際問題的最值。復(fù)習(xí)回顧:1、二次函數(shù)的圖象是一條,
2024-11-23 12:40
【總結(jié)】范文范例學(xué)習(xí)指導(dǎo)二次函數(shù)動點(diǎn)問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點(diǎn)A(2,1),點(diǎn)P是拋物線上的動點(diǎn),P的橫坐標(biāo)為m(0<m<2),過點(diǎn)P作PB⊥x軸,垂足為B,PB交OA于點(diǎn)C,點(diǎn)O關(guān)于直線PB的對稱點(diǎn)為D,連接CD,AD,過點(diǎn)A作AE⊥x軸,垂足為E.(1)求拋物線的解析式;(2)填空:①用含m
2025-08-05 01:44
【總結(jié)】....二次函數(shù)動點(diǎn)問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點(diǎn)A(2,1),點(diǎn)P是拋物線上的動點(diǎn),P的橫坐標(biāo)為m(0<m<2),過點(diǎn)P作PB⊥x軸,垂足為B,PB交OA于點(diǎn)C,點(diǎn)O關(guān)于直線PB的對稱點(diǎn)為D,連接CD,
2025-03-24 06:24
【總結(jié)】數(shù)學(xué)壓軸題二次函數(shù)動點(diǎn)問題,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸相交于點(diǎn)C(0,).當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連結(jié)AC、BC.(1)求實(shí)數(shù)a,b,c的值;(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動,其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.當(dāng)運(yùn)動
【總結(jié)】運(yùn)用二次函數(shù)的性質(zhì)求實(shí)際問題的最大值和最小值的一般步驟:?求出函數(shù)解析式和自變量的取值范圍?配方變形,或利用公式求它的最大值或最小值。?檢查求得的最大值或最小值對應(yīng)的自變量的值必須在自變量的取值范圍內(nèi)。?頂點(diǎn)式,對稱軸和頂點(diǎn)坐標(biāo)公式:?利潤=售價(jià)-進(jìn)價(jià).回味無窮:二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)
2025-05-13 16:24