【總結】草演他山之石可以攻玉學海無涯揚帆起航《二次函數之面積問題》預習指南一、填寫下列有關一次函數之面積問題的內容1.坐標系中處理面積問題,要尋找并利用_____________的線,通常有以下三種思路:①__________________(規(guī)則圖形);②__________________(分割求和、補形作差);③__________________(例
2025-04-04 04:24
【總結】成都市中考壓軸題(二次函數)精選【例一】.如圖,拋物線y=ax2+c(a≠0)經過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
2025-04-04 04:25
【總結】二次函數專題訓練(含答案)一、填空題,接著再向下平移3個單位,得拋物線.,最大值是.,如果邊長增加x面積就增加y,那么y與x之間的函數關系是.,通過配方化為的形為.(c不為零),當x取x1,x2(x1≠x2)時,函數值相等,則x1與x2的關系是
2025-08-05 03:25
【總結】二次函數的圖像與性質專題練習 1.()如圖是二次函數y1=ax2+bx+c(a≠0)和一次函數y2=mx+n(m≠0)的圖象,當y2>y1,x的取值范圍是 _________ . 2.(2011?揚州)如圖,已知函數y=與y=ax2+bx(a>0,b>0)的圖象交于點P.點P的縱坐標為1.則關于x的方程ax2+bx+=0的解為 _________ .
【總結】1、中考要求:1.經歷探索、分析和建立兩個變量之間的二次函數關系的過程,進一步體驗如何用數學的方法描述變量之間的數量關系.2.能用表格、表達式、圖象表示變量之間的二次函數關系,發(fā)展有條理的思考和語言表達能力;能根據具體問題,選取適當的方法表示變量之間的二次函數關系.3.會作二次函數的圖象,并能根據圖象對二次函數的性質進行分析,逐步積累研究函數性質的經驗.
2025-01-10 10:56
2025-06-24 14:44
【總結】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;2.已知在平面直
【總結】第五節(jié)二次函數(2)二次函數有如下性質:①函數的圖象是__________,拋物線頂點的坐標是________,拋物線的對稱軸是________;②當a0時,拋物線開口______,函數在x=處取____值________;在區(qū)間________上是減函數,在________上是增函數;③當a0
2024-11-12 01:26
【總結】二次函數的最值問題練習:已知函數y=x2+2x+2,xD,求此函數在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對象顯示點隱藏函數圖像顯示對象顯示文本對象顯示對象顯示點練習:已知函數y=x2+2x+2,xD,求此
【總結】二次函數教學設計課型:新授課課時:一課時年級:九年級一、教材分析《二次函數》是浙教版《數學》九年級上冊中的第一章第一節(jié),是《義務教育課程標準》“數與代數”領域的內容。二次函數是九年級的第一節(jié)函數課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數”,“一元二次方程”,“反比例函數”這幾章代數的學習都為接下來的函數的進一步學習奠定了基礎?!岸魏瘮怠钡膶W習
2025-04-07 02:41
【總結】二次函數應用題利潤問題例1、商場促銷,將每件進價為80元的服裝按原價100元出售,一天可售出140件,后經市場調查發(fā)現,該服裝的單價每降低1元,其銷量可增加10件現設一天的銷售利潤為y元,降價x元。(1)求按原價出售一天可得多少利潤?(2)求銷售利潤y與降價x的的關系式(3)商場要使每天利潤為2850元并且使得玩家得到實惠,應該降價多少元?(4)要使利潤最大,則需降價多少
【總結】石家莊e度論壇初中數學二次函數做題技巧一般地,自變量x和因變量y之間存在如下關系:?y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數。二次函數表
2025-04-04 03:45
【總結】二次方程根的分布與二次函數在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設方程的不等兩根為且,相應的二次函數為,方程的根即為二次函數圖象與軸的交點,它們的分布情況見下面各表(每種情況對應的均是充要條件)表一:(兩根與0的大小比較即根的正負情況)分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0大致圖象()
【總結】二次函數單元卷一、選擇題,自變量x的值是()A.2B.-2C.1D.-1000xxxyyy1-1-10xy1()ABC
【總結】二次函數單元檢測題滿分:120分時間:90分鐘 一.選擇題(每小題4分,共40分)1、拋物線y=x2-2x+1的對稱軸是 ( ) (A)直線x=1 (B)直線x=-1 (C)直線x=2 (D)直線x=-22、(2008年武漢市)下列命題:①若,則;②若,則一元二次方程有兩個不相等的實數根;③若,則一元二次