【總結(jié)】第六節(jié)二次函數(shù)基礎(chǔ)梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點式:.(3)交點式:.2.二次函數(shù)
2025-11-03 17:28
【總結(jié)】二次函數(shù)考點分析★★★二次函數(shù)的圖像拋物線的時候應抓住以下五點:開口方向,對稱軸,頂點,與x軸的交點,與y軸的交點.★★二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)一般式:y=ax2+bx+c,三個點頂點坐標(-,).頂點式:y=a(x-h(huán))2+k,頂點坐標對稱軸.,頂點坐標(h,k)★★★abc作用分析│a│的大小決定了開口的寬
2025-04-04 04:24
【總結(jié)】二次函數(shù)中的存在性問題1.如圖,矩形OABC在平面直角坐標系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.(1)求拋物線的解析式;(2)求點D的坐標;(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,
2025-04-04 04:23
【總結(jié)】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
2025-04-04 04:25
【總結(jié)】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;2.已知在平面直
【總結(jié)】第五節(jié)二次函數(shù)(2)二次函數(shù)有如下性質(zhì):①函數(shù)的圖象是__________,拋物線頂點的坐標是________,拋物線的對稱軸是________;②當a0時,拋物線開口______,函數(shù)在x=處取____值________;在區(qū)間________上是減函數(shù),在________上是增函數(shù);③當a0
2025-11-03 01:26
【總結(jié)】二次函數(shù)的最值問題練習:已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對象顯示點隱藏函數(shù)圖像顯示對象顯示文本對象顯示對象顯示點練習:已知函數(shù)y=x2+2x+2,xD,求此
【總結(jié)】二次函數(shù)教學設(shè)計課型:新授課課時:一課時年級:九年級一、教材分析《二次函數(shù)》是浙教版《數(shù)學》九年級上冊中的第一章第一節(jié),是《義務(wù)教育課程標準》“數(shù)與代數(shù)”領(lǐng)域的內(nèi)容。二次函數(shù)是九年級的第一節(jié)函數(shù)課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數(shù)”,“一元二次方程”,“反比例函數(shù)”這幾章代數(shù)的學習都為接下來的函數(shù)的進一步學習奠定了基礎(chǔ)?!岸魏瘮?shù)”的學習
2025-04-07 02:41
【總結(jié)】二次函數(shù)應用題分類解析二次函數(shù)是初中學段的難點,學生學起來覺的比較的吃力,可以把應用問題進行分類:第一類:利用待定系數(shù)法對于題目明確給出兩個變量間是二次函數(shù)關(guān)系,并且給出幾對變量值,要求求出函數(shù)關(guān)系式,并進行簡單的應用。解答的關(guān)鍵是熟練運用待定系數(shù)法,準確求出函數(shù)關(guān)系式。例1.某公司生產(chǎn)的A種產(chǎn)品,它的成本是2元,售價是3元,年銷售量為100萬件,為了獲得更好的效益,公司準備拿
2025-03-24 06:26
【總結(jié)】二次函數(shù)應用題利潤問題例1、商場促銷,將每件進價為80元的服裝按原價100元出售,一天可售出140件,后經(jīng)市場調(diào)查發(fā)現(xiàn),該服裝的單價每降低1元,其銷量可增加10件現(xiàn)設(shè)一天的銷售利潤為y元,降價x元。(1)求按原價出售一天可得多少利潤?(2)求銷售利潤y與降價x的的關(guān)系式(3)商場要使每天利潤為2850元并且使得玩家得到實惠,應該降價多少元?(4)要使利潤最大,則需降價多少
【總結(jié)】石家莊e度論壇初中數(shù)學二次函數(shù)做題技巧一般地,自變量x和因變量y之間存在如下關(guān)系:?y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。二次函數(shù)表
2025-04-04 03:45
【總結(jié)】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點,它們的分布情況見下面各表(每種情況對應的均是充要條件)表一:(兩根與0的大小比較即根的正負情況)分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0大致圖象()
【總結(jié)】二次函數(shù)單元卷一、選擇題,自變量x的值是()A.2B.-2C.1D.-1000xxxyyy1-1-10xy1()ABC
【總結(jié)】二次函數(shù)單元檢測題滿分:120分時間:90分鐘 一.選擇題(每小題4分,共40分)1、拋物線y=x2-2x+1的對稱軸是 ( ) (A)直線x=1 (B)直線x=-1 (C)直線x=2 (D)直線x=-22、(2008年武漢市)下列命題:①若,則;②若,則一元二次方程有兩個不相等的實數(shù)根;③若,則一元二次
【總結(jié)】二次函數(shù)與圖像1、如圖,在平面直角坐標系中,開口向上的拋物線與軸交于兩點,為拋物線的頂點,為坐標原點.若的長分別是方程的兩根,且(1)求拋物線對應的二次函數(shù)解析式;(2)過點作交拋物線于點,求點的坐標;(3)在(2)的條件下,過點任作直線交線段于點求到直線的距離分別為,試求的最大值.