【總結】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點,分別從B,A同時出發(fā),以1cm/s的速度沿線段BA,AC移動,當移動時間t為何值時,△的面積最大?并求出最大面積。A
2025-03-24 06:24
【總結】二次函數(shù)的最值問題舉例(附練習、答案)二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學習的重要基礎.在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實數(shù)時的最值情況(當時,函數(shù)在處取得最小值,無最大值;當時,函數(shù)在處取得最大值,無最小值.本節(jié)我們將在這個基礎上繼續(xù)學習當自變量在某個范圍內(nèi)取值時,函數(shù)的最值問題.同時還將學習二次函數(shù)的最值問題在實際生活中的簡單應用.【例1】當時,求函數(shù)的最大值和
2025-06-23 21:18
【總結】二次函數(shù)在給定區(qū)間上的最值問題【學前思考】二次函數(shù)在閉區(qū)間上取得最值時的,只能是其圖像的頂點的橫坐標或給定區(qū)間的端點.因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項系數(shù)的正負有關),而關于對稱軸與給定區(qū)間的位置關系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關鍵.
2025-03-24 06:25
【總結】閉區(qū)間上二次函數(shù)的最值問題一、?教材分析1、教學背景二次函數(shù)是重要的初等函數(shù)之一,很多問題都要化歸為二次函數(shù)來處理。二次函數(shù)又與一元二次方程、一元二次不等式有著密切的聯(lián)系,因此必須熟練掌握它的性質,并能靈活地運用它的性質去解決實際問題。二次函數(shù)在高考中占有重要的地位,而二次函數(shù)在閉區(qū)間上的最值在各個方面都有重要的應用,主要考察我們分類討論和數(shù)形結合思想。這節(jié)課我們主要學會應
2025-05-02 23:56
【總結】...... 二次函數(shù)中的最值問題重難點復習一般地,如果是常數(shù),,那么叫做的二次函數(shù).二次函數(shù)用配方法可化成:的形式的形式,得到頂點為(,),對稱軸是.,∴頂點是,對稱軸是直線.二次函數(shù)常用來解決最值
2025-03-24 12:30
【總結】二次函數(shù)與線段和差問題例題精講:如圖拋物線y=ax2+bx+c(a≠0與x軸交于A,B(1,0),與y軸交于點C,直線y=12x-2經(jīng)過點A,,對稱軸為直線l,(1)求拋物線解析式。(2)求頂點D的坐標與對稱軸l.(3)設點E為x軸上一點,且AE=CE,求點E的坐標。(4)設點G是y軸上的一點,是否存在點G,使得GD+GB的值最小,若存在,求出G點坐標,若不存在,
2025-04-04 03:00
【總結】二次函數(shù)在閉區(qū)間上的最值石家莊市42中學于祝高中數(shù)學例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy–23例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求
2024-10-17 04:08
【總結】二次函數(shù)1.最大利潤與二次函數(shù)?頂點式,對稱軸和頂點坐標公式:?利潤=售價-進價.駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質想一想P352?總利潤=每件利潤×銷售數(shù)量.何時橙子總產(chǎn)量最大?100棵橙子樹,每一棵樹平均結600個橙子.現(xiàn)準備
2024-11-11 04:55
【總結】 九年級《二次函數(shù)的最值問題》說課稿 各位老師好: 下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析、教學反思六大方面來闡述我對這節(jié)課的分析和設計: 一、教材分析 ...
2025-04-05 07:27
【總結】青年教師匯報課課題二次函數(shù)在給定區(qū)間上的最值執(zhí)教者唐瑩瑩(三)軸定區(qū)間動:例3:已知函數(shù)223yxx???,若??,1()xtttR???,求該函數(shù)的最大值和最小值。練練習習::已已知知函函數(shù)數(shù)??2,,122??????mmxxxy的最
2024-11-22 03:15
【總結】第六節(jié)二次函數(shù)基礎梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點式:.(3)交點式:.2.二次函數(shù)
2024-11-09 01:26
【總結】二次函數(shù)專題:角度一、有關角相等1、已知拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,,過點作軸的平行線與拋物線交于點,拋物線的頂點為,直線經(jīng)過、兩點.(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計算出這兩個角的大小,那么他們之間的大小關系就清楚了b
2025-04-04 04:23
【總結】二次函數(shù)動點問題題型Ⅰ因動點而產(chǎn)生的面積問題(2012?張家界)如圖,拋物線y=﹣x2+x+2與x軸交于C、A兩點,與y軸交于點B,OB=2.點O關于直線AB的對稱點為D,E為線段AB的中點.(1)分別求出點A、點B的坐標;(2)求直線AB的解析式;(3)若反比例函數(shù)y=的圖象過點D,求k值;(4)兩動點P、Q同時從點A出發(fā),分別沿AB、AO方向向B、O移動,
2025-04-04 04:24
2024-11-12 17:28
【總結】 《實際問題中二次函數(shù)的最值問題》教學設計 一、教學目標 (1)能運用二次函數(shù)的頂點式解決實際問題中的最大值問題,并能利用函數(shù)的圖象與性質進行解題。 (2)理解函數(shù)圖象頂...
2025-04-05 06:06