【總結】二次函數的最值問題重點掌握閉區(qū)間上的二函數的最值問題難點了解并會處理含參數的二次函數的最值問題核心區(qū)間與對稱軸的相對位置思想數形結合分類討論復習引入頂點式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
2024-11-11 21:11
【總結】二次函數的最值二次函數的最值問題重點掌握閉區(qū)間上的二函數的最值問題難點了解并會處理含參數的二次函數的最值問題核心區(qū)間與對稱軸的相對位置思想數形結合分類討論復習引入頂點式:y=a(x-m)2+n(a0)兩根式:y
2024-11-10 00:49
【總結】第5章二次函數用二次函數解決問題第1課時利用二次函數解決銷售利潤最值問題目標突破總結反思第5章二次函數知識目標用二次函數解決問題知識目標1.通過建立二次函數模型,利用二次函數性質解決實際生活中利潤的最大(小)值問題.2.通過對函數圖像的分析,能用二次函數解決利潤與圖像信息的相
2025-06-17 23:51
【總結】中考壓軸題精選典型例題講解 二次函數——動點產生的線段最值問題【例1】如圖,在直角坐標系中,點A,B,C的坐標分別為(-1,0),(3,0),(0,3),過A,B,C三點的拋物線的對稱軸為直線.(1)求拋物線的解析式及頂點D的坐標;(2)點E是拋物線的對稱軸上的一個動點,求當AE+CE最小時點E的坐標;(3)點P是x軸上的一個動點,求當PD+PC最小時點P的坐標;(4)
2025-03-24 06:23
【總結】《二次函數在閉區(qū)間上的最值問題》教學設計潼關中學郭傳濤1.教材分析二次函數是高中數學的重要內容,是在學習了《函數》一節(jié)內容之后編排的。通過本節(jié)課的學習,既可以對二次函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習其它函數,尤其是利用函數的圖像來研究函數的性質打下堅實的基礎,而含參數的二次函數是進入高中以后學生遇到的新的問題,雖然在初中學生接觸過二次函數,但是初中的要求比
2025-03-24 06:25
【總結】二次函數在給定區(qū)間上的最值問題【學前思考】二次函數在閉區(qū)間上取得最值時的,只能是其圖像的頂點的橫坐標或給定區(qū)間的端點.因此,影響二次函數在閉區(qū)間上的最值主要有三個因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項系數的正負有關),而關于對稱軸與給定區(qū)間的位置關系的討論是解決二次函數在給定區(qū)間上的最值問題的關鍵.
2025-04-04 04:24
【總結】第1章二次函數1.4二次函數的應用第1課時利用二次函數解決面積最值問題筑方法勤反思第1章二次函數學知識學知識二次函數的應用知識點一求二次函數的最大值或最小值二次函數y=ax2+bx+c(a≠0),當x=________時,函數有最值,最值為______
2025-06-16 23:28
【總結】有限區(qū)間上含參數的二次函數的最值問題執(zhí)教:吳雄華時間:2020-9班級:高三(1)班教學目標:知識與技能:1.掌握定義在變化區(qū)間上的一元二次函數最值的求解方法;2.掌握系數含參數的一元二次函數在定區(qū)間上最值的求解方法;過程與方法:3.加深學生運
2024-11-03 00:07
【總結】班級姓名2018屆初三數學培優(yōu)材料(一)函數實際應用專題(一)例題1小華的爸爸在國際商貿城開專賣店專銷某種品牌的計算器,進價12元∕只,售價20元∕只.為了促銷,專賣店決定凡是買10只以上的,每多買一只,,但是最低價為16元∕只.(1)顧客一次至少買多少只,才能以最低價購買?(2)寫出當一次購買x只時(x>10),利潤y
2025-06-23 13:54
【總結】二次函數在閉區(qū)間上的最值一、知識要點:一元二次函數的區(qū)間最值問題,核心是函數對稱軸與給定區(qū)間的相對位置關系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設,求在上的最大值與最小值。分析:將配方,得頂點為、對稱軸為當時,它的圖象是開口向上的拋物線,數形結合可得在[m,n]上的最值:(1)當時,的最小值是的最大值是中的較大者。(2)當時若,由在上是增函
2025-05-16 02:58
【總結】深圳實驗培訓中心2009年暑期初二培訓資料姓名月日第4課時二次函數的實際應用——面積最大(小)值問題知識要點:在生活實踐中,人們經常面對帶有“最”字的問題,如在一定的方案中,花費最少、消耗最低、面積最大、產值最高、獲利最多等;解數學題時,我們也常常碰到求某個變量的最大值或最小值之類的問題,這就
2025-03-25 06:48
2025-06-16 12:04
【總結】第1章二次函數1.4二次函數的應用第2課時利用二次函數解決距離、利潤最值問題筑方法勤反思第1章二次函數學知識學知識二次函數的應用知識點一求含有根號的代數式的最值1.代數式x2+4x+10的最小值是________.【解析】x2+
2025-06-16 08:51
【總結】二次函數在閉區(qū)間上的最值石家莊市42中學于祝高中數學例1、已知函數f(x)=x2–2x–3.(1)若x∈[–2,0],求函數f(x)的最值;10xy–23例1、已知函數f(x)=x2–2x–3.(1)若x∈[–2,0],求
2024-10-17 04:08