【總結】第六節(jié)二次函數(shù)基礎梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點式:.(3)交點式:.2.二次函數(shù)
2024-11-09 01:26
2024-11-12 17:28
【總結】一元二次方程根的分布情況設方程的不等兩根為且,相應的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點,它們的分布情況見下面各表(每種情況對應的均是充要條件)表一:(兩根與0的大小比較即根的正負情況)分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0大致圖象()得出的結論大致圖象()
2025-04-04 04:23
【總結】20年中考真題考點知識點記憶口訣收集整理了1990年-2010年20年中考數(shù)學試題真題與模擬題,窮盡一切二次函數(shù)知識點與考點,仔細體會下每一知識點與考點之真實意圖理解記憶,記憶中理解:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關系.①當時拋物線開口向上頂點為其最低點;②當時拋物線
2025-03-23 04:31
【總結】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;2.已知在平面直
2025-04-04 04:24
【總結】初三數(shù)學二次函數(shù)知識點總結一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調:和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結構特征:⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基
2025-07-22 19:22
【總結】第1頁共14頁初三數(shù)學二次函數(shù)知識點總結一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強調:和一元二次方程類似,二次項系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實數(shù).2.
2024-11-06 06:49
【總結】二次函數(shù)教學設計課型:新授課課時:一課時年級:九年級一、教材分析《二次函數(shù)》是浙教版《數(shù)學》九年級上冊中的第一章第一節(jié),是《義務教育課程標準》“數(shù)與代數(shù)”領域的內容。二次函數(shù)是九年級的第一節(jié)函數(shù)課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數(shù)”,“一元二次方程”,“反比例函數(shù)”這幾章代數(shù)的學習都為接下來的函數(shù)的進一步學習奠定了基礎?!岸魏瘮?shù)”的學習
2025-04-07 02:41
【總結】二次函數(shù)命題點年份各地命題形式考查頻次2015考查方向二次函數(shù)的圖象和性質2014云南(T12填)填空1個近3年考查2次,主要考查對圖象的認識與性質的理解,預計2015年考查的可能性較大.2013昭通(T9選)選擇1個確定二次函數(shù)的解析式2014昆明(T23解),曲靖(T24解)解答2個高頻考點:近3年考查12次
【總結】二次函數(shù)應用題利潤問題例1、商場促銷,將每件進價為80元的服裝按原價100元出售,一天可售出140件,后經(jīng)市場調查發(fā)現(xiàn),該服裝的單價每降低1元,其銷量可增加10件現(xiàn)設一天的銷售利潤為y元,降價x元。(1)求按原價出售一天可得多少利潤?(2)求銷售利潤y與降價x的的關系式(3)商場要使每天利潤為2850元并且使得玩家得到實惠,應該降價多少元?(4)要使利潤最大,則需降價多少
【總結】(2012南京市,24,8)某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于點A、B,已知∠CO2D=600,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24厘米,設⊙O1的半徑為x厘米.(1)用含x的代數(shù)式表示扇形O2CD的半徑;(2)若⊙O1、,當⊙O1的半徑為多少時,該玩具的制作成本最?。?/span>
【總結】咸陽育才中學電子教案課題。二次函數(shù)的圖像主備郝妮濤審核人上課人上課時間教學目標知識與能力:(1)理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響。(2)掌握二次函數(shù)的性質與圖象,掌握從函數(shù)的性質推斷圖象的方研究法。過程與方法:掌握從函數(shù)解析式、性質出發(fā)去認識函數(shù)圖象的高度理解和研究函數(shù)的方法。情感態(tài)度和價值觀:讓學生感受數(shù)學思想
【總結】第五節(jié)二次函數(shù)(2)二次函數(shù)有如下性質:①函數(shù)的圖象是__________,拋物線頂點的坐標是________,拋物線的對稱軸是________;②當a0時,拋物線開口______,函數(shù)在x=處取____值________;在區(qū)間________上是減函數(shù),在________上是增函數(shù);③當a0
2024-11-12 01:26
【總結】二次函數(shù)考點分析★★★二次函數(shù)的圖像拋物線的時候應抓住以下五點:開口方向,對稱軸,頂點,與x軸的交點,與y軸的交點.★★二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)一般式:y=ax2+bx+c,三個點頂點坐標(-,).頂點式:y=a(x-h(huán))2+k,頂點坐標對稱軸.,頂點坐標(h,k)★★★abc作用分析│a│的大小決定了開口的寬
【總結】二次函數(shù)的最值問題練習:已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對象顯示點隱藏函數(shù)圖像顯示對象顯示文本對象顯示對象顯示點練習:已知函數(shù)y=x2+2x+2,xD,求此