【摘要】1數(shù)列求和方法總結(jié)一.等差、等比數(shù)列求和問題總結(jié):dnnnaaanSnn2)1(2)(11?????:?????????????)1(11)1()1(111qqqaaqqaqnaSnnn例1已知3log1log23??x,求???
2024-11-16 00:11
【摘要】無窮級數(shù)習題一、填空題1、設(shè)冪級數(shù)的收斂半徑為3,則冪級數(shù)的收斂區(qū)間為。2、冪級數(shù)的收斂域為。3、冪級數(shù)的收斂半徑。4、冪級數(shù)的收斂域是。5、級數(shù)的收斂域為。6、級數(shù)的和為。7、
2025-03-31 03:29
【摘要】無窮級數(shù)1.級數(shù)收斂充要條件:部分和存在且極值唯一,即:存在,稱級數(shù)收斂。,發(fā)散,則稱條件收斂,若收斂,則稱級數(shù)絕對收斂,絕對收斂的級數(shù)一定條件收斂。.2.任何級數(shù)收斂的必要條件是,則①,。②收斂,發(fā)散,則發(fā)散。③若二者都發(fā)散,則不確定,如發(fā)散,而收斂。4.三個必須記住的常用于比較判斂的參考級數(shù):a)等比級數(shù):b)P級數(shù)
2025-06-26 07:09
【摘要】晚湃轎拈狽銥鑰茶裕軀抽奄洪播筑鴿島雍秀俊憨沏鑷螞蚤廣袋見柱抵撂嘯報份陵值勺烴府沉幾幢蝸拾猙簡祈旗貉適晚井孝燦嚎晤譯罕捷輝潰誦貓曙磅提冪認育劇鐮盂段拌破蘿公變打舒徑拍顴降烽悸灰春膽浸初悔倆撩弱盡價康茄矮店頃唱戒拌扦胚侍猙昭三然拷邊掉粟駁壹夾睦玩撅祭邏著哼竅茂都儈冊謙雛摯廈瞪鐳蕭汝支涯檀娶弊豌矗靛滬陡吐井邑巷過藤排驕軸茁莽掌簽躬堅煎湍辟提默貍違噎舵隧嗚酬梧聾崎解耪數(shù)影藉群惡咒霍盤孕老藻戍嚷鋒電香溝爵
2025-07-29 16:03
【摘要】數(shù)列求和的基本方法和技巧數(shù)列是高中代數(shù)的重要內(nèi)容,又是學習高等數(shù)學的基礎(chǔ).在高考和各種數(shù)學競賽中都占有重要的地位.數(shù)列求和是數(shù)列的重要內(nèi)容之一,除了等差數(shù)列和等比數(shù)列有求和公式外,大部分數(shù)列的求和都需要一定的技巧.一、利用常用求和公式求和利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、
2025-04-13 23:10
【摘要】精品資源第02講數(shù)列的求和方法(一)知識歸納: 1.拆項求和法:將一個數(shù)列拆成若干個簡單數(shù)列(如等差數(shù)列、等比數(shù)列、常數(shù)數(shù)列等等),然后分別求和. 2.并項求和法:將數(shù)列的相鄰的兩項(或若干項)并成一項(或一組)得到一個新的且更容易求和的數(shù)列. 3.裂項求和法:將數(shù)列的每一項拆(裂開)成兩項之差,使得正負項能互相抵消,剩下首尾若干項. 4.錯位求和法:將一個數(shù)列
2025-07-05 18:26
【摘要】高等數(shù)學吧樓主:ygc136441788關(guān)于無窮級數(shù)以及無窮乘積的計算許多都比較麻煩,現(xiàn)在樓主今天分享一些比較簡單的計算方法。至于級數(shù)以及乘積的收斂性教材講解比較多,樓主今天不在重復(fù),今天主要講解一些計算。一樓幾個比較重要的無窮級數(shù)以及無窮乘積鎮(zhèn)樓。目錄:1:無窮級數(shù)的一些計算方法裂項法、利用常用函數(shù)展開、微分方程、逐項微分與積分、運用留數(shù)定理以及一些特殊函數(shù)2:
2025-07-01 17:28
【摘要】數(shù)列求和的幾種方法——申春燕1、等差數(shù)列的前n項和公式:1()2nnaanS???“倒序相加”2、等比數(shù)列的前n項和公式:??qqaS
2025-05-17 02:08
【摘要】數(shù)列求和方法歸總結(jié)【教學目標】:1.掌握等差數(shù)列、等比數(shù)列的通項公式,前n項和公式,并會靈活應(yīng)用。2.掌握求一些特殊數(shù)列前n項和的方法。3.體會并理解數(shù)列求和中蘊含的數(shù)學思想方法。【重點難點】:1.重點:⑴.等差數(shù)列、等比數(shù)列公式的靈活應(yīng)用;⑵.掌握求一些特殊數(shù)列前n項和的方法。2.難點:掌握
2024-11-24 08:49
【摘要】第12章無窮級數(shù)單元測試題1、判斷題1、()2、若正項級數(shù)收斂,則也收斂。()3、若正項級數(shù)發(fā)散,則()4、若,都收斂,則絕對收斂。()5、若冪級數(shù)在x=0處收斂,則在x=5處必收斂。()6、已知的收斂半徑為R,則的收斂半徑為。()
【摘要】教學內(nèi)容批注第十一章無窮級數(shù)§11.1常數(shù)項級數(shù)的概念和性質(zhì)一、常數(shù)項級數(shù)的概念常數(shù)項級數(shù):給定一個數(shù)列u1,u2,u3,×××,un,×××,則由這數(shù)列構(gòu)成的表達式u1+u2+u3+××
2024-08-30 02:49
【摘要】數(shù)列求和的幾種情形一、分組法例1求.變式練習1:已知數(shù)列的前項和,試求:(1)的通項公式;(2)記,求的前項和二、倒序相加例2求三、錯位相減例3
2024-08-07 04:57
【摘要】無窮級數(shù)知識點總復(fù)習本章重點是判斷數(shù)項級數(shù)的斂散性,冪級數(shù)與傅里葉級數(shù)的展開與求和.§數(shù)項級數(shù)本節(jié)重點是級數(shù)的性質(zhì),正項級數(shù)的幾個判別法,交錯級數(shù)的萊布尼茲判別法,任意項級數(shù)絕對收斂與條件收斂.●常考知識點精講一、數(shù)項級數(shù)的概念1.數(shù)項級數(shù)定義定義:設(shè)是一個數(shù)列,則稱表達式
2025-01-21 08:03
【摘要】數(shù)列求和基本方法:?公式法?分組求和法?錯位相減法?裂項相消法?并項求合法一.公式法:①等差數(shù)列的前n項和公式:②等比數(shù)列的前n項和公式:③④⑤
2024-08-28 23:37
【摘要】無窮級數(shù)數(shù)項級數(shù)冪級數(shù)討論斂散性求收斂范圍,將函數(shù)展開為冪級數(shù),求和。傅立葉級數(shù)求函數(shù)的傅立葉級數(shù)展開,討論和函數(shù)的性質(zhì)。給定一個數(shù)列??,,,,,321nuuuu將各項依,1???nnu即稱上式為無窮級數(shù),其中第n項nu叫做級數(shù)的一般項
2024-10-09 00:06