【導(dǎo)讀】3.已知函數(shù)f=sin????x+π2,g=cos????x-π2,設(shè)h=fg,則下列說(shuō)法不正確的。x+π2=gB.任意x∈R,f????p1:存在x∈R,sin2x2+cos2x2=12;①任意x∈R,不等式x2+2x>4x-3均成立;②若log2x+logx2≥2,則x>1;③“若a>b>0且c<0,則ca>cb”的逆否命題是真命題;集合A是集合A∪B或A∩B的子集;12.已知p:對(duì)任意x∈[-2,2],函數(shù)f=lg總有意。1.D解析:因?yàn)閜真,q假,由真值表可以判斷,p或q為真,p且q為假,?充分不必要條件,D中概率計(jì)算錯(cuò)誤,故選C.x+π2=-sinx,g=sinx,若f????x-π2=sinx=g,對(duì)于C,由于h=fg=sinx·cosx=12sin2x為奇函數(shù),對(duì)p2,當(dāng)y=0時(shí)結(jié)論成立;對(duì)p3,顯然1-cos2x2=|sinx|,由于x∈[0,π],所以結(jié)論恒成立;12.解:當(dāng)p為真時(shí),[來(lái)源:學(xué)§科§網(wǎng)Z§X§X§K]. 3a-a·2-22>0,解得a>4;當(dāng)q為真時(shí),f′=x2-2ax+4≥0在[1,+∞)上恒成立,即x+4x≥2a對(duì)x∈[1,+∞). 綜上,“p或q”為真時(shí),a>4或a≤2.