【導讀】解析:a·b=3×2+m×(-1)=6-m=0,∴m=6.所以52+x2=132,解之得x=±12.3.已知a=(2,3),b=,則(a+b)·(a-b)=________.解析:|a|=13,|b|=20=25,解析:∵a·b=3×(-5)+4×12=33,|a|=32+42=5,|b|=-2+122=13,∴cosθ=a·b|a||b|=335×13=3365.
【總結】平面向量共線的坐標表示學習目標:1.理解用坐標表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標,判斷向量是否共線.3.掌握三點共線的判斷方法.【學法指導】1.應用平面向量共線條件的坐標表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2025-11-10 20:38
【總結】【優(yōu)化指導】2021年高中數(shù)學平面向量基本定理學業(yè)達標測試新人教A版必修41.設O點是平行四邊形ABCD兩對角線的交點,下列向量組中可作為這個平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③
2024-12-08 13:12
【總結】平面向量數(shù)量積的坐標表示、模、夾角.),1,1(),32,1(1?的夾角與求已知例baba????例2已知A(1,2),B(2,3),C(-2,5),試判斷?ABC的形狀,并給出證明.練習(1)已知=(4,3),向量是垂直于的單位向量,求.abab
2025-04-24 09:59
【總結】第3課時平面向量的數(shù)量積基礎過關1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當θ=0°時,與;當θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結】平面向量共線的坐標表示一、求點P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實數(shù)λ的值.例1已知點A(-2,-3),點B(4,1),延長AB到P,使|AP|=3|PB|,求點P的坐標.解:因為點在AB的延長線上,P為AB的外分點,所以AP=λPB,λ0
2025-11-10 17:32
【總結】2.平面向量共線的坐標表示命題方向1三點共線問題例1.O是坐標原點,OA→=(k,12),OB→=(4,5),OC→=(10,k).當k為何值時,A、B、C三點共線?[分析]由A、B、C三點共線可知,AB→、AC→、BC→中任兩個共線,由坐標表示的共線條件解方
【總結】 平面向量數(shù)量積的坐標表示、模、夾角 學習目標 核心素養(yǎng) .(重點) 、夾角等相關問題.(難點) .(易混點) ,培養(yǎng)學生的數(shù)學運算素養(yǎng). 、長度以及論證垂直問題,提升學生邏輯推...
2025-04-03 02:47
【總結】【優(yōu)化指導】2021年高中數(shù)學平面向量共線的坐標表示課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎中檔稍難向量共線的判定1、2、310由向量共線求參數(shù)56、7、8向量共線的應用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【總結】平面向量的正交分解及坐標表示一、三角形三條中線共點的證明圖10如圖10所示,已知在△ABC中,D、E、L分別是BC、CA、AB的中點,設中線AD、BE相交于點P.求證:AD、BE、CL三線共點.分析:欲證三條中線共點,只需證明C、P、L三點共線.解:設AC=a,AB=b,則AL
【總結】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學中,由于討論像力矩以及物體繞軸旋轉時的角速度與線速度之間的關系等這類問題的需要,就必須引進兩向量乘法的另一運算——向量的向量積.定義如下:兩個向量a與b的向量積是一個新的向量c:(1)c的模等于以a及b兩個向量為邊所作成的平行四邊形的面積;(2)c垂直于
2025-11-26 06:47
【總結】課題坐標的標示及運算教學目標知識與技能了解平面向量的正交分解,掌握向量的坐標表示.過程與方法掌握兩個向量和、差及數(shù)乘向量的坐標運算法則.情感態(tài)度價值觀正確理解向量坐標的概念,要把點的坐標與向量的坐標區(qū)分開來.重點溝通向量“數(shù)”與“形”的特征,使向
【總結】平面向量的數(shù)量積的物理背景及其含義命題方向1計算向量的數(shù)量積例1已知|a|=4,|b|=5,當(1)a∥b;(2)a⊥b;(3)a與b的夾角為60°時,分別求a與b的數(shù)量積.[分析]a∥b時其夾角為0°或180°,a⊥b時其夾角為90°,將兩向量的模及夾角代入
【總結】平面向量的正交分解及坐標表示平面向量的坐標運算1.下列說法正確的有()①向量的坐標即此向量終點的坐標.②位置不同的向量其坐標可能相同.③一個向量的坐標等于它的終點坐標減去它的始點坐標.④相等的向量坐標一定相同.A.1個B.2個C.3個D.4個解析:向量的坐標是其終點坐標減去起點對
【總結】平面向量的坐標運算學習目標:1.了解平面向量的正交分解,掌握向量的坐標表示.2.掌握兩個向量和、差及數(shù)乘向量的坐標運算法則.3.正確理解向量坐標的概念,要把點的坐標與向量的坐標區(qū)分開來.【學法指導】1.向量的正交分解是把一個向量分解為兩個互相垂直的向量,是向量坐標表示的理論依據(jù).向量的坐標表示
2025-11-10 17:41
【總結】平面向量的正交分解及坐標表示平面向量的坐標運算考查知識點及角度難易度及題號基礎中檔稍難平面向量的坐標表示1、2、46平面向量的坐標運算3、57、8綜合問題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點坐標為()A.(1,4)