【導(dǎo)讀】問題1根據(jù)下圖寫出向量a,b,例1已知平面上三點A,B(0,6),C,解設(shè)c=xa+yb,解得x=-2,y=2,∴c=-2a+2b.試用b,c表示a.3.已知四邊形ABCD的三個頂點A(0,2),B,
【總結(jié)】 《平面向量正交分解及坐標(biāo)表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運算; (3)會根據(jù)向量的坐標(biāo),判斷向量是否共線. 【重點難點】 教學(xué)重點...
2025-04-03 01:19
【總結(jié)】平面向量共線的坐標(biāo)表示一、求點P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實數(shù)λ的值.例1已知點A(-2,-3),點B(4,1),延長AB到P,使|AP|=3|PB|,求點P的坐標(biāo).解:因為點在AB的延長線上,P為AB的外分點,所以AP=λPB,λ0
2025-11-10 17:32
【總結(jié)】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點共線問題例1.O是坐標(biāo)原點,OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時,A、B、C三點共線?[分析]由A、B、C三點共線可知,AB→、AC→、BC→中任兩個共線,由坐標(biāo)表示的共線條件解方
2025-11-10 20:38
【總結(jié)】§2.平面向量的坐標(biāo)運算【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、會用坐標(biāo)表示平面向量的加法、減與數(shù)乘運算。2、培養(yǎng)細(xì)心、耐心的學(xué)習(xí)習(xí)慣,提高分析問題的能力?!局R梳理、雙基再現(xiàn)】1、兩個向量和差的坐標(biāo)運算已知:??1122(,),(,)axybxx,?為一實數(shù)則?????122
2025-11-23 08:37
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2025-11-08 19:47
【總結(jié)】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識與技能理解兩個向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計算向量的模,情感態(tài)度價值觀并推導(dǎo)平面內(nèi)兩點間的距離公式重點能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個向量垂直難點能運用數(shù)量積的坐標(biāo)表示進行向量數(shù)量積的運算.
2025-11-26 06:47
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線的坐標(biāo)表示課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量共線的判定1、2、310由向量共線求參數(shù)56、7、8向量共線的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【總結(jié)】2.平面向量的坐標(biāo)運算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進行運算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2025-11-26 10:15
【總結(jié)】第一頁,編輯于星期六:點三十三分。,2.3.4平面向量共線的坐標(biāo)表示,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十三分。,第四頁,編輯于星期六:點...
2025-10-13 18:49
【總結(jié)】復(fù)習(xí)引入?.(1)21向量的一組基底有叫做表示這一平面內(nèi)所,我們把不共線向量ee(2)基底不惟一,關(guān)鍵是不共線;進行分解;的條件下、在給出基底由定理可將任一向量21(3)eea.,,(4)2121惟一確定的數(shù)量、、是被、分解形式惟一基底給定時eea??若e1、e2是同一平面內(nèi)的兩個不共線向量
2025-11-08 15:02
【總結(jié)】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過實例了解如何用坐標(biāo)表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點)2.理解用坐標(biāo)表示的平面向量共線的條件,并會應(yīng)用.(重點)3.會根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點)1.平面向量共線的坐標(biāo)表示2
2025-11-10 19:09
【總結(jié)】海鹽高級中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運算
2025-08-05 06:24
【總結(jié)】平面向量的坐標(biāo)運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
【總結(jié)】教學(xué)內(nèi)容:§平面向量的基本定理及坐標(biāo)表示(1)教學(xué)目標(biāo)1.理解平面向量的基本定理,會作出由已知一組基底所表示的向量;2.理解向量夾角及垂直的概念;3.理解向量的正交分解,感受正交分解的實際意義,掌握向量的坐標(biāo)表示。本節(jié)重點平面向量的基本定理,向量的正交分解及坐標(biāo)表示本節(jié)難點平面向量的
2025-11-11 03:14