【導讀】例2已知A(1,2),B(2,3),C,ABC的形狀,并給出證明.垂直于的單位向量,求.直角三角形OAB,?,求點B的坐標.
【總結】【優(yōu)化指導】2021年高中數(shù)學平面向量數(shù)量積的坐標表示、模、夾角課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎中檔稍難向量數(shù)量積的運算1、412與模有關的問題2、59、10向量的夾角與垂直問題3、67、8、111.設向量a=(1,0),b=??
2024-12-09 03:41
【總結】【優(yōu)化指導】2021年高中數(shù)學平面向量數(shù)量積的坐標表示、模、夾角學業(yè)達標測試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
【總結】平面向量的數(shù)量積一、知識梳理:?1、平面向量的數(shù)量積?(1)a與b的夾角:?(2)向量夾角的范圍:?(3)向量垂直:[00,1800]abθ共同的起點aOABbθOABOABOABOAB
2024-11-10 03:15
【總結】平面向量的數(shù)量積1、向量的夾角ababOAB??18000???????或30當時,則稱a與b互相垂直,記作a⊥b.2???10當時,則稱a與b同向.0??20當時,則稱a與b反向.???注:
2024-11-23 12:04
【總結】《平面向量數(shù)量積的物理背景及其含義》教學目標?;?;?;?.?教學重點:平面向量的數(shù)量積定義?教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用問題1:我們研究了向量的哪些運算?這些運算的結果是什么?一探究?問題2:我們是怎
2024-11-23 11:29
【總結】復習例題講解小結回顧引入新課講解性質(zhì)講解課堂練習一般地,實數(shù)λ與向量a的積是一個向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當λ0時,λa的方向與a方向相同;當λ0時,λa
2024-10-19 17:18
【總結】§數(shù)量積的性質(zhì)1.向量的數(shù)量積的定義是什么?一、復習鞏固2.?ab?向量數(shù)量積的幾何意義是什么cosabab???數(shù)量積定義cosabaabab??數(shù)量積等于的長度與在方向上的投影的乘積.
2024-10-19 17:16
【總結】第7章平面向量的坐標表示(1)向量的概念:既有方向又有大小的量,注意向量和數(shù)量的區(qū)別;(2)零向量:長度為零的向量叫零向量,記作:,注意零向量的方向是任意方向;(3)單位向量:給定一個非零向量,與同向且長度為1的向量叫的單位向量,的單位向量是;(4)相等向量:方向與長度都相等的向量,相等向量有傳遞性;(5)平行向量(也叫共線向量):如果向量的基線互相平
2025-06-30 20:51
【總結】第一篇:平面向量的數(shù)量積教案 、模、夾角 教學目標: 1、知識目標:推導并掌握平面向量數(shù)量積的坐標表達式,會利用數(shù)量積求解向量的模、、能力目標:通過自主互助探究式學習,培養(yǎng)學生的自學能力,啟發(fā)學...
2024-10-21 00:49
【總結】第三節(jié)平面向量的數(shù)量積及平面向量的應用舉例基礎梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2024-11-12 16:44
【總結】平面向量數(shù)量積說課稿 平面向量數(shù)量積說課稿1一、說教材 平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉(zhuǎn)化為數(shù)之間的運算。本節(jié)內(nèi)容是在平面向量的坐標表示以及平...
2024-12-04 22:04
【總結】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§6平面向量數(shù)量積的坐標表示,第二頁,編輯于星期六:點三十三分。,,自主學習梳理知識,課前基礎梳理,第三頁,編輯于星期六:點三十三分。,,第四頁,編...
2024-10-22 18:51
【總結】平面向量的數(shù)量積的性質(zhì)【問題導思】 已知兩個非零向量a,b,θ為a與b的夾角.·b=0,則a與b有什么關系?【提示】 a·b=0,a≠0,b≠0,∴cosθ=0,θ=90°,a⊥b.·a等于什么?【提示】 |a|·|a|cos0°=|a|2.(1)如果e是單位向量,則a·e=e·
2025-06-25 15:19
【總結】海鹽高級中學高新軍復習引入:?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運算
2024-08-14 06:24
【總結】121312721722或72浙江省黃巖中學高中數(shù)學《平面向量數(shù)量積的坐標表示模夾角第二課時》練習題新人教版必修4【學習目標、細解考綱】。合問題?!局R梳理、雙基再現(xiàn)】1.a=2b=2a,b且夾角為450,使b-aa?與垂直,則?=______2.a=(
2024-12-02 08:37