【總結(jié)】說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。下面,我從背景分析、教學(xué)目標(biāo)設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)過程設(shè)計、教學(xué)媒體設(shè)計及教學(xué)評價設(shè)計六個方面對本節(jié)課的思考進(jìn)行說明。一、背景分析1、學(xué)習(xí)任務(wù)分析平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個重要概念
2025-04-16 12:12
【總結(jié)】模塊4同步訓(xùn)練——平面向量的數(shù)量積一、知識回顧1.向量的夾角:已知兩個非零向量與b,作=,=b,則∠AOB=()叫做向量與b的夾角。2.兩個向量的數(shù)量積:已知兩個非零向量與b,它們的夾角為,則·b=︱︱·︱b︱cos.其中︱b︱cos稱為向量b在方向上的投影.3.向量的數(shù)量積的性質(zhì):若=(),b=()則e·=·e=︱︱c
2025-07-07 14:56
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-09 03:12
【總結(jié)】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【總結(jié)】課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復(fù)習(xí)·課標(biāo)版·A數(shù)學(xué)(理)課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復(fù)習(xí)·課標(biāo)版·A數(shù)學(xué)(理)考綱要求考情分析本定理及其意義.2.掌握平面向量的正交分解及其坐標(biāo)表示.3.會用坐
2025-07-24 07:57
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-11 09:01
【總結(jié)】平面向量的正交分解及坐標(biāo)表示一、向量的分解1e2eaADFE量的分解、通過幾何畫板研究向1的分解圖線性和與為、請畫212eea1:,1????μλDCBACμABλAD共線當(dāng)且僅當(dāng)、、三點(diǎn)則、如圖令例ABCD已知O,A,B是平面上的三個點(diǎn),直線AB上有一點(diǎn)C,滿足
2025-07-25 06:26
【總結(jié)】基礎(chǔ)自主回扣命題熱點(diǎn)突破知能綜合檢測目錄下一頁上一頁末頁首頁章首課前練習(xí):已知正△ABC的邊長為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會
2025-07-23 07:12
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-09 05:07
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2024-11-09 06:28
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示課標(biāo)點(diǎn)擊平面向量共線的坐標(biāo)表示預(yù)習(xí)導(dǎo)學(xué)典例精析課堂導(dǎo)練課堂小結(jié)1.理解向量共線定理.2.掌握兩個向量平行(共線)的坐標(biāo)表示和會應(yīng)用其求解有關(guān)兩向量
2025-07-25 14:48
【總結(jié)】平面向量的坐標(biāo)運(yùn)算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應(yīng)一一對應(yīng)點(diǎn)AOA向量(,)xy坐標(biāo)1122+eeaaa?12(,)aaa?1
2025-07-20 05:00
【總結(jié)】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………學(xué)校:___________姓名:________班級:________考號:________…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………絕密★啟用前2018年01月19日214****9063的高中數(shù)學(xué)組卷試卷副標(biāo)題
2025-03-25 01:22
【總結(jié)】《平面向量共線的坐標(biāo)表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標(biāo)運(yùn)算延伸的作用,它是在學(xué)生對平面向量的基本定理有了充分的認(rèn)識和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標(biāo)表示則為用“數(shù)”的運(yùn)算處理“形”的問題搭建了橋梁,同時也為定比分點(diǎn)坐標(biāo)公式和中點(diǎn)坐標(biāo)公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標(biāo)表示,對立體幾何教材也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
【總結(jié)】§平面向量的數(shù)量積一、選擇題1.若向量a,b,c滿足a∥b且a⊥c,則c·(a+2b)=( )A.4 B.3C.2 D.0解析:由a∥b及a⊥c,得b⊥c,則c·(a+2b)=c·a+2c·b=0.答案:D2.若向量a與