【導(dǎo)讀】2.等比中項(xiàng)關(guān)系:對于數(shù)列{an},若anan+2=a2n+1,則數(shù)列{an}是等。已知數(shù)列{an}是等比數(shù)列,其通項(xiàng)公式為:an=2×3n-1,則anan+2=4·32n,3.若數(shù)列{an}是等比數(shù)列,Sn是其前n項(xiàng)的和,k∈N*,那么Sk,S2k-Sk,S3k-S2k成。4.若數(shù)列{an}的前n項(xiàng)和Sn=p,且p≠0,q≠0,q≠1,則數(shù)列{an}是等。解析:Sn=a1-anq1-q,先求q.2.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+10a1,a5=9,5.等比數(shù)列{an}共有2n項(xiàng),公比q≠1,則a2+a4+?8.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,若a2·a3=2a1且a4與2a7的等差中。即77-77q=112-7q,解得q=-12,應(yīng)用通項(xiàng)公式an=a1qn-1,得78=14·qn+1,qn+1=116,解析:由a3=a1q2=14及q=-12得a1=1,所以a17+a18+a19+a20=·q16=S4·q16=24=16.解析:由2=S5得2=3×,S210-6S10+9=117-3S10,13.定義在∪上的函數(shù)f,如果對于任意給定的等比數(shù)列{an},①f=x2;②f=2x;③f=|x|;④f=ln|x|.其中是“保等比數(shù)列函數(shù)”