【導(dǎo)讀】=0,此時(shí)Sm、S2m-Sm、S3m-S2m不成等比數(shù)列;當(dāng)q≠-1或m為奇數(shù)時(shí),Sm、S2m-Sm、方法一:設(shè)等比數(shù)列a1,a2,a3,?,它的前n項(xiàng)和是Sn=a1+a2+a3+?Sn=a1+a1q+a1q2+?①-②,得(1-q)Sn=____________,由此得q≠1時(shí),+an-1=q,即。=a1+q(a1+a1q+?例1在等比數(shù)列{an}中,S3=72,S6=632,求an.例3求和:Sn=x+2x2+3x3+?變式訓(xùn)練3求數(shù)列1,3a,5a2,7a3,?個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積構(gòu)成的新數(shù)列的求和可用此法.7.若等比數(shù)列{an}中,a1=1,an=-512,前n項(xiàng)和為Sn=-341,則n的值是________.。+a1qn-1+a1qna1-a1qna1?②÷①得1+q3=9,∴q=a1=12,因此an=a1qn-1=2n-2.變式訓(xùn)練1解∵a3·an-2=a1·an,∴a1an=128,將①代入Sn=a1-anq1-q,可得q=12,由an=a1qn-1可解得n=6.例2解方法一因?yàn)镾2n≠2Sn,