【總結】2.等比數(shù)列的前n項和學習目標預習導學典例精析欄目鏈接情景導入九章算術有一道“耗子穿墻”的問題:今有垣厚5尺,兩鼠相對,大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半,問幾何日相逢?各穿幾何?在實際上是一個等比數(shù)列求和的問題,他的解法也很
2024-11-17 23:16
【總結】2.等比數(shù)列的前n項和1.(1)等比數(shù)列的前n項和公式:當q≠1時,Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當q=1時,Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2024-12-08 13:12
【總結】(1)教學目標1.掌握等比數(shù)列的前n項和公式及公式證明思路.2.會用等比數(shù)列的前n項和公式解決有關等比數(shù)列前n項和的一些簡單問題.教學重點1. 等比數(shù)列的前n項和公式;2. 等比數(shù)列的前n項和公式推導.教學難點靈活應用公式解決有關問題
2025-06-07 16:48
【總結】等比數(shù)列的前n項和(第1課時)學習目標掌握等比數(shù)列的前n項和公式及公式證明思路.會用等比數(shù)列的前n項和公式解決一些有關等比數(shù)列的簡單問題.合作學習一、設計問題,創(chuàng)設情境傳說國際象棋的發(fā)明人是印度的大臣西薩·班·達依爾,舍罕王為了表彰大臣的功績,準備對大臣進行獎賞.國王問大臣:“你
2024-12-08 20:21
【總結】等比數(shù)列的前n項和(第2課時)學習目標掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關問題.通過等比數(shù)列的前n項和公式的推導過程,體會“錯位相減法”以及分類討論的思想方法.通過對等比數(shù)列的學習,發(fā)展數(shù)學應用意識,逐步認識數(shù)學的科學價值、應用價值,發(fā)展數(shù)學的理性思維.合作學習一、設計問題,創(chuàng)設情
2024-12-09 03:41
【總結】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項公式;3.等比數(shù)列的中項公式;4.等比數(shù)列的下標公式。問題探究????。和項的前,請推導等比數(shù)列公比為,中,前項為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
2024-11-18 08:10
【總結】復習:1,00nnnnaaqnNqaa???????⑴{}成等比數(shù)列()(2)通項公式:)0(111?????qaqaann)0(1?????qaqaamnmn國際象棋盤內(nèi)麥子數(shù)“爆炸”傳說西塔發(fā)明了國際象棋而使國王十分高興,他決定要重賞西塔,西塔說:
2024-11-17 19:36
【總結】本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2復習回顧等比數(shù)列前n項和公式11nnaaqSq???1(1)1nnaqSq???公式的推證用的是錯位相減法當q=1時,1naSn?
2024-11-17 05:41
【總結】知識回顧等比數(shù)列{an}的求和公式及推導方法。問題探究??也成等比數(shù)列。,,求證:,項和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項的和,那么它前項的和等于,前項和等于:如果一個等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關系?并,,
【總結】等比數(shù)列的前n項和(一)自主學習知識梳理1.等比數(shù)列前n項和公式(1)公式:Sn=?????=?q≠1??q=1?.(2)注意:應用該公式時,一定不要忽略q=1的情況.2.等比數(shù)列前n項和的一個常用性質(zhì)在等比數(shù)列中,若等比數(shù)
2024-12-05 06:40
【總結】等比數(shù)列的前n項和(二)自主學習知識梳理1.等比數(shù)列{an}的前n項和為Sn,當公比q≠1時,Sn=________________=____________;當q=1時,Sn=________.2.等比數(shù)列前n項和的性質(zhì)(1)連續(xù)m項的和(如Sm、S2m-Sm、S3m-S2m),仍
2024-12-05 01:51
【總結】第7課時等比數(shù)列的前n項和n項和公式的推導方法.n項和公式解決有關等比數(shù)列的問題..印度的舍罕王打算獎賞發(fā)明國際象棋的大臣西薩·班·達依爾,并問他想得到什么樣的獎賞.大臣說:“陛下,請您在這張棋盤的第一個小格內(nèi)賞給我一粒麥子,在第二個小格內(nèi)給兩粒,在第三個小格
2024-12-08 02:37
【總結】等比數(shù)列的前n項和(二)課時目標n項和公式的有關性質(zhì)解題.n項和公式解決實際問題.1.等比數(shù)列{an}的前n項和為Sn,當公比q≠1時,Sn=______________=_____;當q=1時,Sn=____________.2.等比數(shù)列前n項和的性質(zhì):(1)連續(xù)m項的和(如Sm、S
2024-12-05 10:13
【總結】課題:等比數(shù)列的n項和概念班級:姓名:學號:第學習小組【學習目標】等比數(shù)列前n項和公式的推導過程,理解前n項和公式的含義,并會用公式進行有關計算【課前預習】1.推導公式:(1)研究633222221??????的計算;
2024-11-20 01:05
【總結】等比數(shù)列的前n項和(一)課時目標n項和公式的推導方法.n項和公式解決一些簡單問題.1.等比數(shù)列前n項和公式:(1)公式:Sn=?????=qq=.(2)注意:應用該公式時,一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項