【導(dǎo)讀】)且無關(guān)的數(shù)或式子是與0,(1???它是以1為首項,公比是2的等比數(shù)列,由于每格的麥粒數(shù)都是前一格的2倍,請同學(xué)們考慮如何求出這個和?一般地,設(shè)等比數(shù)列a1,a2,a3,…,na已知等比數(shù)列中。項和的前求數(shù)列:nnxxxxn,,3,2,.432?q=1和q≠1兩種情況。
【總結(jié)】等比數(shù)列的前n項和(第1課時)學(xué)習目標掌握等比數(shù)列的前n項和公式及公式證明思路.會用等比數(shù)列的前n項和公式解決一些有關(guān)等比數(shù)列的簡單問題.合作學(xué)習一、設(shè)計問題,創(chuàng)設(shè)情境傳說國際象棋的發(fā)明人是印度的大臣西薩·班·達依爾,舍罕王為了表彰大臣的功績,準備對大臣進行獎賞.國王問大臣:“你
2024-12-08 20:21
【總結(jié)】等比數(shù)列的前n項和(第2課時)學(xué)習目標掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關(guān)問題.通過等比數(shù)列的前n項和公式的推導(dǎo)過程,體會“錯位相減法”以及分類討論的思想方法.通過對等比數(shù)列的學(xué)習,發(fā)展數(shù)學(xué)應(yīng)用意識,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值,發(fā)展數(shù)學(xué)的理性思維.合作學(xué)習一、設(shè)計問題,創(chuàng)設(shè)情
2024-12-09 03:41
【總結(jié)】主講老師:陳震等比數(shù)列的前n項和(一)復(fù)習引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-07 11:53
【總結(jié)】知識回顧等比數(shù)列{an}的求和公式及推導(dǎo)方法。問題探究??也成等比數(shù)列。,,求證:,項和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項的和,那么它前項的和等于,前項和等于:如果一個等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關(guān)系?并,,
2025-11-09 08:10
【總結(jié)】等比數(shù)列...學(xué)習目標等比數(shù)列的定義定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(指與n無關(guān)的數(shù)),這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q(q≠0)表示。??11nnnnaaqqaa
2025-11-09 12:09
【總結(jié)】等比數(shù)列的前n項和(一)課時目標n項和公式的推導(dǎo)方法.n項和公式解決一些簡單問題.1.等比數(shù)列前n項和公式:(1)公式:Sn=?????=qq=.(2)注意:應(yīng)用該公式時,一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項
2024-12-05 10:13
【總結(jié)】2.等比數(shù)列的前n項和學(xué)習目標預(yù)習導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入九章算術(shù)有一道“耗子穿墻”的問題:今有垣厚5尺,兩鼠相對,大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半,問幾何日相逢?各穿幾何?在實際上是一個等比數(shù)列求和的問題,他的解法也很
2025-11-08 23:16
【總結(jié)】一、選擇題(每題4分,共16分)1.(2020·遼寧高考)設(shè)Sn為等比數(shù)列{an}的前n項和,已知3S3=a4-2,3S2=a3-2,則公比q=()(A)3(B)4(C)5(D)6【解析】選,得3a3=a
2025-11-12 01:09
【總結(jié)】等比數(shù)列第1課時等比數(shù)列1.理解等比數(shù)列的概念,明確“同一個常數(shù)”的含義.2.掌握等比數(shù)列的通項公式及其應(yīng)用.3.會判定等比數(shù)列,了解等比數(shù)列在實際中的應(yīng)用.1231.等比數(shù)列文字語言一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)
2025-11-08 17:05
【總結(jié)】等比數(shù)列的前n項和(二)課前自主學(xué)習課堂講練互動課后智能提升理解等比數(shù)列前n項和的性質(zhì),并能用它解決等比數(shù)列的求和問題.掌握數(shù)列求和的重要方法——分組法與并項法.課前自主學(xué)習課堂講練互動課后智能提升1.若數(shù)列{an}為等比數(shù)列(公比q≠-1),Sn為前n項和,則Sn,S2n-Sn,S3n-S2n,
【總結(jié)】第7課時等比數(shù)列的前n項和n項和公式的推導(dǎo)方法.n項和公式解決有關(guān)等比數(shù)列的問題..印度的舍罕王打算獎賞發(fā)明國際象棋的大臣西薩·班·達依爾,并問他想得到什么樣的獎賞.大臣說:“陛下,請您在這張棋盤的第一個小格內(nèi)賞給我一粒麥子,在第二個小格內(nèi)給兩粒,在第三個小格
2024-12-08 02:37
【總結(jié)】第7課時等比數(shù)列的前n項和n項和公式的推導(dǎo)方法.n項和公式解決有關(guān)等比數(shù)列的問題..印度的舍罕王打算獎賞發(fā)明國際象棋的大臣西薩?班?達依爾,并問他想得到什么樣的獎賞.大臣說:“陛下,請您在這張棋盤的第一個小格內(nèi)賞給我一粒麥子,在第二個小格內(nèi)給兩粒,在第三個小格內(nèi)給四粒,照這樣下去,每一小格內(nèi)都比前一小格
2025-11-08 19:03
【總結(jié)】等比數(shù)列的前n項和(二)課時目標n項和公式的有關(guān)性質(zhì)解題.n項和公式解決實際問題.1.等比數(shù)列{an}的前n項和為Sn,當公比q≠1時,Sn=______________=_____;當q=1時,Sn=____________.2.等比數(shù)列前n項和的性質(zhì):(1)連續(xù)m項的和(如Sm、S
【總結(jié)】2.等比數(shù)列的前n項和1.(1)等比數(shù)列的前n項和公式:當q≠1時,Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當q=1時,Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2024-12-08 13:12
【總結(jié)】課題:等比數(shù)列的n項和概念班級:姓名:學(xué)號:第學(xué)習小組【學(xué)習目標】等比數(shù)列前n項和公式的推導(dǎo)過程,理解前n項和公式的含義,并會用公式進行有關(guān)計算【課前預(yù)習】1.推導(dǎo)公式:(1)研究633222221??????的計算;
2025-11-11 01:05